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fasciculus gracilis 14 days later. In the PTPs–/–

mice, axon extension into the lesion penumbra
was significantly improved (P < 0.002; Fig. 4, D
to F, and fig. S4). PTPs–/– axons extended well
into the region of inhibitory proteoglycan sur-
rounding the lesion (Fig. 4, G to I). However,
similar to the effect of chondroitinase (10), ro-
bust regeneration beyond the core of the lesion
did not occur. This might, in principle, reflect
partial redundancy with other PTPs in the LAR
subfamily, and it would also be consistent with
the known presence of other growth impediments
such as the myelin inhibitors (1–5) and factors
intrinsic to unconditioned neurons (33, 34). The
results in this regeneration model system dem-
onstrate a role for PTPs in mediating the axonal
response to the inhibitory CSPG-rich scar in a
spinal cord lesion in vivo.

It has long been recognized that CSPG is one
of the major inhibitors of neural regeneration;
however, the mechanism has been poorly under-
stood, and it has been unclear whether the mech-
anism even involves specific cellular receptors,
limiting the options to tackle this important area
by molecular approaches. Finding that PTPs is a
functional receptor that binds and mediates ac-
tions of CSPGs opens the door to new molecular
approaches to understand CSPG action not only
in regeneration, but also in development and plas-
ticity. Our work on PTPs also sheds new light on
functions of the PTP family, and it will be inter-
esting to know whether the other PTPs of the
LAR subfamily may collaborate in nerve regen-
eration. The finding that a PTPs fusion protein
can detect lesion sites in the adult CNS not only
sheds light on the biological role of PTPs but
also provides an injury biomarker, and thus a
potential tool for research or diagnosis. Further-

more, the identification of a specific site on PTPs
that binds CSPG provides a lead for potential
drug design to treat spinal cord injury. Alternative
blocking approaches, such as soluble receptor
ectodomains, could be used, and such approaches
could potentially be combined with the blockade
of other regeneration inhibitors. In addition to the
possible treatment of spinal cord injury, the
results here may be relevant to many other forms
of neural injury as well as neurodegeneration that
involves reactive astrogliosis. Identifying a func-
tional receptor for a major class of regeneration
inhibitors provides new pathways for research in-
to mechanisms and therapeutic interventions to
enhance regeneration or plasticity after nervous
system injury.

Note added in proof: While this paper was
in press, an additional characterization of the
PTPs gene knockout was published. Fry et al.
(35) studied the corticospinal tract and reported
regeneration after both surgical and contusive
lesions, further contributing to the evidence in
the present paper and previous studies that
PTPs acts in multiple areas of the nervous sys-
tem and can play a key role in regeneration.
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Using Neural Measures of Economic
Value to Solve the Public Goods
Free-Rider Problem
Ian Krajbich,2 Colin Camerer,1,2 John Ledyard,2 Antonio Rangel1,2*

Every social group needs to decide when to provide public goods and how to allocate the costs
among its members. Ideally, this decision would maximize the group’s net benefits while also
ensuring that every individual’s benefit is greater than the cost he or she has to pay. Unfortunately,
the economic theory of mechanism design has shown that this ideal solution is not feasible when
the group leadership does not know the values of the individual group members for the public
good. We show that this impossibility result can be overcome in laboratory settings by
combining technologies for obtaining neural measures of value (functional magnetic resonance
imaging–based pattern classification) with carefully designed institutions that allocate costs based
on both reported and neurally measured values.

Public good allocation problems are per-
vasive in society. Examples in the gov-
ernment sector include the provision of

national defense and environmental clean-ups.
Examples in the private sector include hiring a

security guard or improving common areas in a
condominium association. These examples high-
light two key features of public goods. First,
since their benefits are nonexcludable, they are
enjoyed by all members of the group, even those

who do not help pay for them. Second, the op-
timal allocation of public goods depends on the
group members’ willingness to pay for them (1).

If the government (or group leadership) knew
every individual’s valuation for the good, the
allocation problem would be straightforward:
The government could compute the socially op-
timal level of the public good and then tax group
members in proportion to the benefits that they
receive in order to finance the cost of the good. In
fact, in this case there are many possible fair rules
for splitting the cost of the public good such that
every individual’s benefit from the public good is
greater than his or her tax (2, 3). Unfortunately,
individual valuations for public goods are not
directly observable by the government, which
makes the allocation problem challenging. In
particular, self-interested individuals have an in-
centive to understate those values, if they are
asked directly for their valuations and know that
their share of the cost will increase with their
reported values. This is known as the free-rider
problem, and it makes it very difficult in prac-
tice to accurately determine which public goods
should be provided and how the costs should be
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shared. Countless experiments around the world
have shown that the financial incentive to free-
ride is pervasive and leads to allocations with a
socially inefficient level of public good provision
(4–6).

Social scientists have explored two different
ways to limit the problems caused by free-riding.
One approach investigates whether prosocial
motives can be used to overcome the financial
incentive to free-ride. For example, preplay com-
munication and costly punishment of free-riders
have been shown to ameliorate the problem in
laboratory settings (7, 8). Although the full ca-
pabilities of these types of institutions are not yet
known, the body of evidence (4, 5) suggests that
prosocial motives are not always sufficient to
eliminate free-riding behavior in all cultures (9).
It is also unknown whether these motives are
strong and pervasive enough to solve large-scale
problems of practical interest.

The second approach has focused on de-
signing institutions (known as “mechanisms”)
that make it advantageous for self-interested in-
dividuals to reveal their true values. A mecha-
nism is a set of rules specifying the information
that is collected from the group members and
how that information is used to decide howmuch
of the public good to produce and how to split the
costs. The number of potential mechanisms for
public good problems is very large. Fortunately,
the mechanism design problem is greatly simpli-
fied by a result, known as the revelation principle
(10–12), which states that for every mechanism
with a desirable set of properties, there is a related
mechanism that achieves the same outcomes but
in which individuals are simply asked to reveal
their values. This result is useful and important
because it limits the search space to direct revela-
tion mechanisms: If a desirable solution does not
exist within this class, then it does not exist at all.

A large body of work in economics has
sought to design revelation mechanisms satis-
fying four desirable properties. The first is social
efficiency (SE), which requires that the optimal
amount of the public good always be produced,
meaning that the net benefit to the group is max-
imized. The second property is dominant strategy
incentive compatibility (DSIC), which requires
that thewealth-maximizing strategy for eachmem-
ber of the group is to reveal his or her true value,
regardless of others’ values or behavior. This
property is desirable because truthful reporting is
essential for determining the socially efficient
level of the public good, and DSIC ensures that
every subject has a financial incentive to do so
regardless of his or her beliefs about the other
group members. The third property is balanced
budget (BB), which requires that the cost of the

public good be completely covered by the mem-
bers of the group. This property is desirable be-
cause it rules out the need for outside sources of
funding. The fourth property is voluntary partic-
ipation (VP), which requires that the expected
value from participating in the mechanism be
nonnegative for each individual, so that members
do not have to be coerced into participating. A
central result in economic theory is that that there
is no set of rules satisfying all four desired criteria
(SE, DSIC, BB, and VP) simultaneously (13). In
response to this fundamental impossibility result,
theorists and experimenters have explored mech-
anisms that relax some of the criteria, but those
mechanisms constitute a less than ideal solution
to the problem (14, 15).

A key assumption behind the impossibility
result is that the information used by the mecha-
nisms is restricted to voluntarily reported values.
However, a growing body of work in neuro-
science has shown that it is possible to read sub-
jective states with ranging degrees of accuracy
(commonly 60 to 90%) using technology such as
functional magnetic resonance imaging (fMRI)
(16–23). This technology opens the door for a
new class of mechanisms in which outcomes and
payments depend both on individuals’ reported
values and on neural readings about their values.
We refer to this new class of institutions as neu-
rally informed mechanisms (NIMs).

To explore the technological feasibility of
NIMs, we studied the public good allocation
problem in a simple experimental setting. In each
trial, subjects were randomly assigned to a group
of sizeN = 5, 10, 15, 20, or 25 and were assigned
either a low ($0 to $2) or high ($8 to $10) in-
duced value for an abstract public good (24). The
cost of this good was fixed at $5 × N. As is
common in experimental economics, subjectswere
paid based on their payoffs in the experiment.
Therefore, subjects were paid an amount equal to

their value for the public good if it was produced,
and zero otherwise. Subjects made decisions in
50 different trials and were paid based on their
average payoff from all trials. The overall payoff
for each trial depended on the subject’s value, the
tax he or she had to pay (described below), and
whether or not the public good was produced.
Under the NIM, the public good was produced
only when the sum of the reported values was
greater than its cost. The true values were inde-
pendently and identically drawn from a uniform
distribution so that on average it was efficient to
produce the public good in only half of the trials.

The experimental task procedure and rules of
the NIM were as follows. First, subjects were
shown the parameters of the decision problem in
the sequential order depicted in Fig. 1A (24)
while undergoing whole-brain fMRI. Their trial-
specific value for the public good was shown in
isolation during an initial screen, which allowed
us to use a nonlinear support-vector-machine
classifier (SVM) to predict subjects’ values (high
or low) based only on their pattern of neural
responses to the value screen (24). After seeing
the group size and the total cost of the public
good, subjects chose whether to report their true
value for the public good (high or low). If the
public good was produced, the NIM then used
both the classifier predictions and the reported
values to determine the taxes paid by each in-
dividual, as depicted in Fig. 1B. Subjects are
penalized with a higher tax when their reported
value differs from the classifier’s prediction. Fur-
thermore, the higher the prediction accuracy, the
more likely it is that a lie will be detected.

In the supporting online material (24), we show
that the NIM satisfies SE, DSIC, BB, and VP. Be-
cause the public good is produced only when the
reported values exceed the cost, SE requires that
every individual reveal his or her true value. Sub-
jects’ incentives to reveal their true values depend

1Computation and Neural Systems Program, California Insti-
tute of Technology, Pasadena CA 91125, USA. 2Division of
Humanities and Social Sciences, California Institute of Tech-
nology, Pasadena, CA 91125, USA.

*To whom correspondence should be addressed. E-mail:
rangel@hss.caltech.edu

Fig. 1. (A) Timing of the experimental trials (top to bottom). (B) Tax paid by the subject in each
trial as a function of the classifier’s prediction and his or her reported type. Negative numbers
denote transfers to the subjects.
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on what they believe the accuracy of the classifier
to be. Figure 2A depicts the difference in expected
payoff between truth-telling and lying as a function

of the classifier’s accuracy. Low-value types are
strictly better off revealing their true value for any
classification rate between 50% (i.e., no decoding)

and 100% (i.e., full decoding). In contrast, high-
value types are strictly better off revealing their true
value for any accuracy rate above 55% but have an
incentive to lie for rates between 50% and 55%.
This provides an intuition for why the mechanism
satisfies DSIC, and thus SE, for classification rates
above 55%. Figure 2B shows the total expected
payoff from reporting truthfully in the NIM at dif-
ferent classifier accuracies, assuming that the other
subjects are reporting truthfully and that they have
high values 50% of the time. The expected payoff
is positive for both value types at classification rates
above 60%, which illustrates why VP is satisfied.
Finally, BB is satisfied because by design the NIM
distributes any financial surplus or deficit evenly
between the players.

There was no feedback during the experiment,
and subjects’ values were classified afterward to
determine their payments. Therefore, subjects made
decisions based solely on their beliefs about the
classifier’s accuracy, which were assessed at the
end of the experiment by debriefing. The rules of
the NIM were explained to the subjects before-
hand (24). In particular, they were told that in a
previous experiment the same classification algo-
rithm used here was able to predict values with an
accuracy of 60%. Clear instructions about how
the mechanism works are necessary to guard
against comprehension mistakes, which would
cloud interpretation of the results, and are consid-
ered a requirement by mechanism designers (25).

The 60 T 2% (SEM) estimate for the classifier
accuracy was based on an actual preliminary cal-
ibration experiment in which 14 subjects played a
simple version of the NIM. In this experiment,
the classified values played no role on outcomes
and the subjects did not know that their values
were being predicted (Fig. 3A) (24).

Figure 3 depicts the results of the experiment.
The average classification accuracy was 56 T 4%
(SEM), insignificantly below the stated 60% rate
(two-tailed P = 0.33) (Fig. 3A). We tested sub-
jects’ belief in the accuracy of the classifying
technology by asking them to predict the classi-
fier prediction rate for their own data and reward-
ing them based on the accuracy of their guess.
During the debriefing period, subjects predicted a
classification rate of 64 T 2% (SEM), which is
insignificantly different from the actual classifica-
tion rate (two-tailed P = 0.10) (Fig. 3A). Most im-
portantly, subjects revealed their true values nearly
100% of the time, consistent with the properties of
the NIM at the subjects’ predicted classification
rates (Fig. 3B). Figure S15 shows that the fre-
quency of truth-telling did not change during the
experiment (24). Figure 3C compares the social
surplus generated by the NIM, which is a mea-
sure of social efficiency, with two important bench-
marks: (i) the social optimum that could be
achieved if the government had full information
and thus could always choose the socially ef-
ficient allocation and (ii) the theoretical average
outcome generated by the best non-NIM mech-
anism satisfying BB, VP, and DSIC (24). The
NIM generated 93% of the full-information so-

Fig. 2. (A) Expected benefit of truth-telling as a function of value type and classifier accuracy. For a
particular classifier accuracy, the value of the curve indicates the difference in expected payoff between
reporting truthfully and lying. Therefore, if the value is positive, then IC is satisfied and the subject should
report his or her true value; if the value is negative, then IC is violated and the subject would earn more by
misreporting his or her value. The arrow denotes the payoffs at the 60% accuracy rate used to describe the
mechanism. A subject’s decision is based on his or her beliefs about what the accuracy of the classifier will
be and not on the realized accuracy after the experiment. (B) Total expected payoffs as a function of the
actual classification accuracy of the mechanism for a subject who reveals his or her true type (24). For a
particular classifier accuracy, the value of the curve indicates how much the subject can expect to earn, on
average, if he or she reports his or her type truthfully. A positive value means that VP is satisfied; a
negative value means VP is violated. Because the function is increasing with the accuracy rate, subjects
have an incentive to cooperate with the experimenter to make the classifier as accurate as possible.

Fig. 3. (A) Mean accuracy rate of the classifier in the cal-
ibration (N=14) andmain experiments (N=10), as well as
the classification rate guessed by the subjects (N=10), with
standard error bars. Two-sided P values: calibration versus
main = 0.41; calibration versus guess = 0.20; main versus
guess = 0.10. (B) Individual reports as a function of true
type (N= 10), with standard error bars clustered by subject.
Low types misreported high 3.5 T 1.6% (SEM) of the time,
whereas high types reported high99.5T 0.5%(SEM) of the
time. (C) Average social surplus per individual (N = 489),
a monetary measure of social efficiency, in the best non-
neuralmechanism [0.142 T 0.037 (SEM)], theNIM [0.569 T
0.038 (SEM)], and the best possible allocation under con-
ditions of full information [0.614 T 0.029 (SEM)]. One-
sided P values: choice versus NIM = 10−18; choice versus
optimum = 10−23; NIM versus optimum = 0.20.
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cial optimum, as compared with 23% for the best
theoretical non-NIM mechanism.

This study establishes the viability of NIMs
in a simple experimental setting with two types
and with experimentally induced valuations. Be-
cause NIMs constitute a considerable departure
from previous institutions used to solve the pub-
lic goods allocation problem, it is worth high-
lighting several of their key properties.

First, NIMs advance the theory and practice
of mechanism design by combining economic
theory with neural measurement technology. In
the past, economists have considered mechanisms
that only use the reported values from each group
member to determine whether the public good is
produced and how the costs are shared. Here, we
show that it is possible to do substantially better
by also employing fMRI measures that are reli-
ably correlated with value.

Furthermore, the use of NIMs is not limited to
fMRI technology. As shown in detail in (24), all
that is needed for the NIM to work is the exis-
tence of some signal of value that is known to be
informative,whatever its source. Thus, simple phys-
iological measures (e.g., pupil dilation or facial
electromyography) might be feasible as well.

Another attractive property of NIMs is that
they do not depend on beliefs about the types or
behavior of the other group members. Truth-
telling and voluntary participation are both domi-
nant strategies with these mechanisms. The only
requirement is that subjects believe that their values
can be predicted with sufficient accuracy by the
technology. Therefore, NIMs might not be viable
if subjects could interfere with the technology. For-
tunately, NIMs have a built-in incentive for sub-
jects to make the classifier predictions as accurate
as possible, because subjects’ expected payoffs are
increasing with the prediction accuracy (Fig. 2B).

Finally, VP is an attractive feature of the
NIMs because it ensures that the public good
makes every individual better off, so the entire
group has an incentive to support the use of the
NIM. Mechanisms are deliberately required to
satisfy this VP property to bolster widespread
acceptance. However, VP can be harder to satisfy
when individuals have substantial amounts of
risk or loss aversion (24), although the problem is
substantially reduced as the accuracy of the neu-
ral measurements improves. Thus, future techno-
logical advances should alleviate this problem.

To summarize, the free-rider problem has been
a challenge for economics, public policy, and polit-
ical science since the work of Adam Smith (26).
The field of mechanism design made substantial
progress during the 20th century. Unfortunately,
a major contribution of the theory was to show
that an ideal solution is not possible when institu-
tions rely only on revealed values. We have shown
that this problem can be overcome in simple pub-
lic good settings by using fMRI to obtain inform-
ative signals of individuals’ values and using those
signals to induce truthful reporting. Our results take
the first step in combining physiological measure-
ments with carefully designed mechanisms to cre-
ate better institutions for collective decision-making.
Future theory and experiments will be needed to
take this technology to more practical applications.
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