
Transformation of stimulus value signals into motor
commands during simple choice
Todd A. Harea,b,1, Wolfram Schultzc, Colin F. Camerera, John P. O’Dohertya, and Antonio Rangela

aComputation and Neural Systems and Humanities and Social Science Divisions, California Institute of Technology, Pasadena, CA 91125; bLaboratory for Social
and Neural Systems Research, Department of Economics, University of Zurich, 8006 Zurich, Switzerland; and cDepartment of Physiology, Development, and
Neuroscience, Cambridge University, Cambridge CB2 1TN, United Kingdom

Edited* by William T. Newsome, Stanford University, Stanford, CA, and approved September 20, 2011 (received for review June 10, 2011)

Decision-making can be broken down into several component
processes: assigning values to stimuli under consideration, select-
ing an option by comparing those values, and initiating motor
responses to obtain the reward. Although much is known about
the neural encoding of stimulus values and motor commands, little
is known about the mechanisms through which stimulus values
are compared, and the resulting decision is transmitted to motor
systems. We investigated this process using human fMRI in a task
where choices were indicated using the left or right hand. We
found evidence consistent with the hypothesis that value signals
are computed in the ventral medial prefrontal cortex, they are
passed to regions of dorsomedial prefrontal cortex and intra-
parietal sulcus, implementing a comparison process, and the output
of the comparator regions modulates activity in motor cortex
to implement the choice. These results describe the network
through which stimulus values are transformed into actions during
a simple choice task.

dynamic causal modeling | valuation

Implementing a choice necessarily requires taking an action.
Consider the problem faced by an individual that has to choose

between two stimuli, one placed on the left and obtained through
a left hand movement and one placed on the right and obtained
through a right hand movement. Theoretical models and a
growing body of evidence (1–3) suggest that the brain solves this
task by assigning values to the two stimuli, comparing them, and
then activating the necessary motor response to implement the
choice. It follows that, to solve the choice problem, the brain
needs to transform stimulus value signals into motor commands.
Over the last decade, we have learned a considerable amount

about the encoding of stimulus value signals at the time of
choice. Functional MRI (fMRI) studies have found stimulus value
signals in ventromedial prefrontal cortex (vmPFC) at the time
of decision-making for primary rewards (4–8), monetary gains
and losses (9–14), delayed rewards (15), consumer goods (16, 17),
and abstract social rewards (18, 19). Related studies using elec-
trophysiological recordings in nonhuman primates have shown
that stimulus values are encoded in the firing rates of individual
neurons in the orbitofrontal cortex (20–23). Importantly, these
studies have shown that these areas encode stimulus value signals
that are independent of the actual choice made, suggesting that
they are an input to the choice process, which is outlined in the
framework above.
The values assigned to each option must be compared to select

the best course of action. Exactly how this comparison occurs in
the brain is an area of active research. One important clue comes
from computational models of the choice process that have
shown that the drift diffusion model (DDM) (24, 25) and some
of its variants (26–29) fit the accuracy and reaction time data of
simple choice tasks remarkably well. Furthermore, activity re-
sembling the output of the DDM has been found in the lateral
intraparietal cortex during perceptual decision-making tasks in
nonhuman primates (30, 31) and the dorsal medial prefrontal
cortex (dmPFC) during action selection tasks in humans (32).

Here, we seek to identify the network involved in transforming
stimulus values into motor commands using fMRI. Our strategy
relies on the fact that an area involved in the comparison process
and linking value computation to action implementation should
satisfy the following three properties. First, its blood oxygen
level-dependent (BOLD) signal should reflect the predictions for
aggregate activity derived from neural implementations of the
DDM. This property is important, because the DDM has been
shown to fit the psychometric data in this class of tasks extremely
well (24, 25). Second, the region should exhibit increased ef-
fective connectivity from areas such as vmPFC that encode
stimulus values at the time of choice. This property is important,
because the comparator needs to receive the value signals to be
able to make choices. Third, the region should exhibit choice-
dependent effective connectivity with motor cortex in a way that
promotes the observed motor responses: it should enhance ac-
tivity in the left motor cortex during right actions and activity in
the right motor cortex during left actions. Based on the evidence
described above and the well-characterized connectivity between
the dmPFC and supplemental motor areas (33–35), we hypoth-
esized that dmPFC and intraparietal sulcus (IPS) would satisfy
the three properties and thus, provide the link between vmPFC
and motor cortex during the transformation of stimulus values
into motor commands.
Previous studies have looked at individual aspects of the value

transformation network but have never tested for all of the
functions necessary to move from valuation to action. A recent
fMRI study of human decision-making found that IPS activity
was consistent with some of the properties that one would expect
from a comparator process, including increased connectivity with
vmPFC at the time of choice and greater activity for more dif-
ficult choices (36), and a previous study by our own group sug-
gested that activity in dmPFC might reflect, in part, the
computations of a comparator process (7). Another study (37)
found that activity in vmPFC was stronger in easier trials than
more difficult decision trials, which is consistent with the hy-
pothesis that the vmPFC might be involved in the computation
of relative stimulus values. Note that, although these papers are
important precursors on which we build and their results are
consistent with subsets of the results obtained here, none of them
address the fundamental goal of fully characterizing the network
involved in how value signals are transmitted to putative com-
parison regions and ultimately, modulate activity in motor cortex
to implement the choice. In particular, none of them has ex-
amined the connectivity of the entire network to test the pre-
dicted intratrial-, choice-, time-, and direction-specific changes in
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coupling between each region of the network. Here, we test these
predictions using dynamic causal modeling (DCM) to examine
the modulation of specific connections at a neuronal timescale
(inferred from a hemodynamic deconvolution of the BOLD sig-
nal) during the periods of stimulus valuation and action prepa-
ration. Consistent with our hypotheses, we found that signaling
from vmPFC to comparator regions increases at the time of
choice, and subsequently, signaling from comparator regions to
motor cortex increases during action preparation in a choice-
dependent manner.

Results
We tested these hypotheses using a paradigm in which, on every
trial, thirsty human subjects were shown pairs of symbols rep-
resenting various amounts of different liquid rewards on the left
and right sides of the screen, and later, they pressed either the
left or right thumbs to indicate their choice (Fig. 1A). After
another brief delay, the chosen liquid was delivered to the sub-
jects inside the scanner on each trial. The task is closely related
to the tasks used in works by Padoa-Schioppa and Assad to in-
vestigate the coding of stimulus value in orbitofrontal cortex with
nonhuman primates (20, 21, 38).

Behavioral Results. We estimated the value of each amount of
every different juice from the behavioral data using the pro-
cedure described in Materials and Methods. The psychometric
curve in Fig. 1B shows that these value estimates provide an
accurate account of the choice behavior. A mixed effects logistic
regression showed that subjects were highly responsive to the
relative value of the two juices (t18 = 8.05, P < 0.001).

Estimation of the Neural DDM. We estimated a simple neural
implementation of the DDM. The model is important for our
analyses, because it makes predictions about the level of aggre-
gate activity and thus, about the BOLD responses that should be
observed in an area involved in the comparison of stimulus val-
ues with action selection. As illustrated in Fig. 2A, the standard
DDM assumes that (i) a relative value signal measuring the es-
timated relative value in favor of the left stimulus is computed
dynamically through a Gaussian Markovian process, with in-
dependent and identically distributed noise and a mean slope of
integration proportional to the underlying true value of the left
minus right items; (ii) the relative value signal starts at zero; and
(iii) a choice is made when either the signal crosses the upper

barrier (so that the left option is selected) or the lower barrier
(so that the right option is selected). At this level of computa-
tional abstraction, the DDM model does not make testable
predictions about the level of activity associated with the com-
parator process that can be used to identify an area involved in
these computations using fMRI. To achieve this link, we speci-
fied the simplest possible plausible neural implementation of the
DDM that matches well with its behavioral predictions (29) (Fig.
2B and Materials and Methods).
An advantage of this model, which we refer to as neural DDM

(nDDM), is that it is fully characterized by three free parameters
(integration slope, inhibition strength, and integration noise).
We estimated the values of these parameters that maximized the
match with the group psychometric choice function shown in Fig.
2C. We used the model and best-fitting parameters to compute
the expected total level of activity in the comparator region for
each trial as a function of the relative values of the left and right
items as well as whether the best item was chosen. Fig. 2D
depicts the average predicted level of activity that is used below
to identify regions associated with value comparison and action
selection. This variable measures the total level of predicted
activity generated by both pools of neurons, which is the relevant
signal for identifying the neural comparator using BOLD fMRI
as long as the two pools of neurons are spatially intermingled.
Previous studies have used difficulty or reaction times as a
marker for putative comparator regions (36, 39–41). Fig. 2D and
the analyses discussed below show that, although this assumption
is a good approximation to the predictions of the nDDM, it
leaves out useful information. This void can be seen from the fact
that the predicted activity levels have different curvature and
average levels in correct and error trials. As described below and
in SI Results, these differences can be exploited to compare the
relative fit of the nDDM with difficulty-based regressors.

Stimulus Value Representation.We estimated a parametric general
linear model (GLM) of BOLD activity that allowed us to identify
areas in which activity was correlated with various signals of
interest. Using this model, we found that activity in vmPFC
correlated with the sum of the values during the initial screen
depicting the two options (P < 0.05, small-volume corrected)
(Fig. 3A and Table S1). Post hoc analyses of this area showed
that activity did not differ by stimulus identity [one-way ANOVA
for liquid type: F(3,72) = 0.90, not significant (n.s.)], location
(paired t test between left and right values: t(18) = −1.40, n.s.), or

Fig. 1. Experimental design and behavior. (A) Subjects were presented with a choice screen offering two different amounts of two different liquids. Colored
shapes represented the liquid identity. The number of shapes indicated the amount of liquid being offered. Subjects were instructed to make their choice
while the shapes were on the screen, but they could only indicate their choice with a button press (left or right thumb) when the response prompt appeared
after a variable delay period. The chosen stimulus was delivered after another variable delay period. (B) Percentage of left choices as a function of value of
left minus value of right stimulus. Error bars represent the SEM across subjects.
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choice status (paired t test between chosen and nonchosen value:
t(18) = 0.56, n.s.).

Motor Responses.Next, we used the same GLM to identify activity
associated with implementing specific motor responses. Left
motor cortex (lMC) and right cerebellum were more active for
responses with the right than the left thumb (P < 0.05, corrected)
(Fig. S1A and Table S2). Conversely, right motor cortex (rMC)
and left cerebellum were more active for responses with the left
than right thumb (P < 0.05, corrected) (Fig. S1B and Table S2).
Post hoc tests showed that lMC and rMC did not meet the cri-
teria for encoding of action values (details in SI Results).

Comparator Regions Linking Valuation to Action: First Property. As
described in the Introduction, any comparator region linking
valuation to action in our experiment should satisfy three key
properties. Here, we implement the test for the first property,
which requires that BOLD responses at the time of stimulus
presentation, when the choice is being made, correlate with the
predicted total activity levels estimated from the nDDM, con-
ditional on the relative value (Vbest − Vworse) and the quality of
choice (best chosen = 0, 1) in each trial (Fig. 2D). We found that
activity in the dmPFC, left dorsolateral prefrontal cortex
(dlPFC), and bilateral IPS correlated with this regressor during
the period from stimulus onset through execution of the motor
response (P < 0.05, corrected) (Fig. 3 B and C, Fig. S2, and
Table S3).
Given the high correlation between the output of our nDDM

and a measure of choice difficulty given by |value left − value
right| (r = −0.930) and previous reports of correlations between
dmPFC, dlPFC, and IPS with choice difficulty (42, 43), we per-
formed post hoc Bayesian model selection on each region of
interest to test whether the predictions from the nDDM or dif-
ficulty best explained activity in these regions. Note that, al-
though there is a high correlation between the two measures, the
nDDM predicts differences in the signal between correct and
error trials that the difficulty measure does not predict. These

differences can be exploited to test for the relative ability of each
model to fit aggregate neural activity in areas of interest (addi-
tional details in SI Results). We used the exceedance probability
(EP; the probability that a given model is more likely than any
other model in the comparison set given the group data) as our
metric for model comparison (44). The EP of the nDDM model
was greater than the difficulty model in all four regions (dmPFC
EP = 0.99, dlPFC EP = 0.58, lIPS EP = 0.98, and rIPS EP =
0.94), indicating that the nDDM provided a better fit to activity
in these areas than the difficulty measure, especially in dmPFC
and IPS.

Comparator Regions Linking Valuation to Action: Second and Third
Properties. We next used DCM to investigate if the dmPFC,
dlPFC, and IPS also exhibited the two key connectivity proper-
ties that an area involved in transforming stimulus values into
motor commands should satisfy: (i) increased input at the time
of choice from the region of vmPFC involved in computing
stimulus values, and (ii) choice-dependent effective connectivity
with motor cortex in a way that promotes the observed motor-
responses.
First, we identified the most likely model using a Bayesian

model selection process (Materials and Methods, SI Materials and
Methods, and Tables S4–S10). The best model, depicted in Fig. 4,
has reciprocal connections between vmPFC, dmPFC, dlPFC,
and bilateral IPS and unidirectional connections from dmPFC,
dlPFC, and bilateral IPS to lMC and rMC.
Second, after determining the most likely model, we used

Bayesian parameter averaging to estimate the group posterior
probabilities of each parameter of the best-fitting model. There
are two types of parameters of interest in the model: fixed con-
nection and coupling modulation parameters.
The fixed connection parameters measure the coupling be-

tween two areas during the rest periods of the task. There was
a high posterior probability (P > 90%) of fixed positive con-
nections between most regions with the exception of vmPFC to
dlPFC, dmPFC to lIPS, lIPS and rIPS to rMC, rIPS to lIPS, and

Fig. 2. Theoretical results. (A) Sketch of
the basic DDM model of binary choice.
(B) Summary of the neural implementa-
tion of the DDM. Red denotes activity
encoding the relative value of left. Every
instant t, this pool of neurons receives
input (VL − VR) + errorL(t), which is in-
tegrated to the previous level of activity
aL(t) without leakage. The pool also
receives a constant level of inhibition
proportional to the level of activity in
the right pool of neurons [denoted in
blue; aR(t)]. The dynamics for the system
encoding the relative value of right are
analogous. (C) Comparison of the psy-
chometric choice curve for the group
(blue) and the one generated by the
model using the best-fitting parameters
(black). (D) Total predicted activity (ar-
bitrary units) in the comparator units
(given by the sum of the instantaneous
levels of activity in both pools of neu-
rons up to the response time) as a func-
tion of the relative value of the two
items and the correctness of the choice.
Green, correct; red, incorrect. Error bars
denote SE.
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rMC to lMC (Table S5). There was also significant negative
coupling from lMC to rMC.
The coupling modulation parameters measure how the inter-

actions between regions change during specific phases of each
decision trial. These modulation parameters represent our pri-
mary measure of interest in the DCM analysis, because they
provide a direct test of the two properties of interest of com-
parator regions that might link valuation to action.
The first set of modulation parameters measures coupling

changes during stimulus presentation, which coincides with the
initial valuation and comparison of the two stimuli. We found
that the coupling from vmPFC to dmPFC [P(|coupling Δ| > 0)
= 0.93] and left IPS [P(|coupling Δ| > 0) = 0.97] and right IPS
[P(|coupling Δ| > 0) = 0.95] increased during this phase, which
provides evidence in favor of the second criterion for these

three areas (Fig. 4B and Table S6). Note that this increase in
signaling from vmPFC to dmPFC and IPS was independent of
the values of the options on each trial. This finding is to be
expected, because the comparison process is necessary at all
levels of value.
The second set of modulation parameters measures coupling

changes during the period from stimulus onset to response for
left and right choices separately. These parameters allowed us to
estimate the posterior probabilities that the functional coupling
strength depended on the identity of the chosen action, and thus,
they help to test if IPS and dmPFC satisfy the third desired
property. As described in Fig. 4 C and D and Tables S7 and S8,
the functional coupling from dmPFC, dlPFC, and IPS to lMC
and rMC was dependent on the choice. When the left action was
chosen, there was positive modulation of the connections to rMC

Fig. 3. Valuation and potential comparator regions. (A)
Activity in vmPFC correlated with the sum of the stimulus
values shown on each trial (P < 0.05, small-volume cor-
rected). (B and C) Activity in bilateral dmPFC (B) and bi-
lateral IPS (C) correlated with the predicted levels of
activity generated by the nDDM model at P < 0.05, whole-
brain corrected.

Fig. 4. Tests of functional coupling using DCM. (A) Diagram
of the pattern of fixed connections between the seven
regions in the most likely DCM model. Note that connections
between dlPFC and IPS have been omitted for clarity but can
be seen in Tables S1–S3. (B) Changes in connectivity during
the stimulus valuation period. (C) Changes in connectivity
during the period between stimulus onset and response in
trials where subjects chose the left option. (D) Changes in
connectivity during the period between stimulus onset and
response in trials where subjects chose the right option.
Connections in red indicate significant positive coupling
coefficients, whereas blue indicates significant negative
coefficients. Lines in gray indicate connections with posterior
probability less than 90%.
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from dmPFC [P(|coupling Δ| > 0) = 0.99], dlPFC [P(|coupling
Δ| > 0) = 0.96], lIPS [P(|coupling Δ| > 0) = 0.92], and rIPS
[P(|coupling Δ| > 0) = 0.97]. However, there was negative mod-
ulation of the connection to lMC from dmPFC [P(|coupling
Δ| > 0) = 0.97], lIPS [P(|coupling Δ| > 0) = 0.97], and rIPS
[P(|coupling Δ| > 0) = 0.93]. In contrast, during the period be-
tween stimulus presentation and right option selection, there was
positive modulation of the coupling to lMC from dmPFC [P(|cou-
pling Δ| > 0) = 0.99], dlPFC [P(|coupling Δ| > 0) = 98%], lIPS,
and rIPS [P(|coupling Δ| > 0) = 0.99, whereas there was neg-
ative modulation of the connection to rMC from lIPS [P(|cou-
pling Δ| > 0) = 0.96] and rIPS [P(|coupling Δ| > 0) = 0.94].
There was no significant modulation in coupling between lMC
and rMC at the time of button press (Table S9). Together, these
last findings provide evidence that dmPFC and IPS satisfy the
third hypothesized property of a comparator region that links
valuation to action.

Discussion
We have used a strategy to characterize the network involved in
the transformation of stimulus values into a motor response
during simple choice using fMRI. We found that activity in
dmPFC and bilateral IPS exhibited three key properties that
areas engaged in value comparison and linking choices to actions
should satisfy. First, activity in these areas correlated with the
predictions of a neural model of choice that approximates the
computations of the DDM. This property is an important marker
of comparator areas, because the DDM has been shown to fit the
psychometric data from binary choice tasks (including ours) ex-
tremely well (24, 25). Second, our DCM analysis showed that
activity in both areas exhibited increased functional coupling at
the time of decision with the region of vmPFC that encoded both
stimulus values, regardless of the choice that was eventually
made. This increased coupling at the time of decision is expected
in areas that use these value signals as inputs to the actual
comparison process. Third, dmPFC and IPS exhibited choice-
dependent coupling with motor cortex in a way that promoted
the observed motor responses: they increased the connectivity
with left motor cortex during right actions and with right motor
cortex during left actions.
Our results provide a link between the value-based and per-

ceptual decision literatures. Single-unit studies in nonhuman
primates have found activity in IPS during saccadic dot motion
tasks that resembles the output of a DDM comparator process
(30, 31, 45, 46). Similar results have been obtained in human
fMRI studies of perceptual decision-making (40, 41). Connec-
tions between vmPFC and parietal regions are likely to be
polysynaptic. Therefore, future studies should seek to identify
the intermediate nodes connecting vmPFC and parietal cortex in
decision-making. One intriguing possibility is that the dmPFC
and IPS might participate in the decision-making process by
computing decision variables in the action and spatial domains,
respectively. Unfortunately, in many paradigms, including our
paradigm, the two types of decision variables are highly corre-
lated and thus, are difficult to disentangle.
The dmPFC is a natural area to implement a comparison pro-

cess in simple economic choice, because it is heavily inter-
connected with both supplementary motor areas and areas of
vmPFC thought to be involved in valuation (33–35). Furthermore,
neurons in dmPFC have been shown to reflect several different
decision variables, making this region ideally qualified to compare
different options and promote the best course of action (22).
Previous fMRI studies have shown that the dmPFC, dlPFC,

and parietal cortex are more active in more difficult value-based
decisions (42, 43). Given the high correlation between difficulty
and the levels of activity predicted by the nDDM model, our
results are consistent with these findings. However, we found
that the nDDM model provides a better fit to activity in dmPFC

and IPS, which is consistent with previous studies that have di-
rectly compared measures of difficulty and value differences in
dmPFC (7).
In summary, our results provide evidence that a neural network,

including regions of vmPFC that reflect stimulus value, compar-
ator processes in dmPFC and IPS, and action effectors in motor
cortex, mediates the transformation of stimulus values into motor
commands at the time of choice. This transformation process is of
central importance to decision neuroscience. A critical question
for future investigations is to what extent the network identified
here is at work in a wide class of decisions (encompassing many
different stimulus types and effectors) or if, in contrast, the net-
work linking stimulus valuation, value comparison, and motor
action is dependent on the parameters of the task.

Materials and Methods
Participants. Twenty subjects (four females) participated in the experiment
(mean age = 23 y, range = 19–35 y). All subjects were right-handed, were
healthy, had normal or corrected to normal vision, had no history of psy-
chiatric diagnoses or neurological or metabolic illnesses, and were not tak-
ing medications that interfered with the performance of fMRI. One male
subject was excluded from analysis because of irregularities in his pattern of
choices. The review board of the California Institute of Technology approved
the study.

Stimuli and Task. Subjects completed a juice decision task in the MRI scanner
(SI Materials and Methods). At the beginning of each trial, subjects saw two
different flavor amount combinations—one on the left side and one on the
right side of the screen (Fig. 1A). Subjects were instructed to make their
choice while the left and right options were on the screen. After a variable
delay (3–6 s), a response prompt was shown on the screen, and the subject
pressed the right thumb to select the right option or the left thumb to select
the left option. The chosen liquid was delivered to the subject after another
variable delay (3–6 s). There were a total of 120 trials across the four func-
tional runs. SI Materials and Methods has details of liquid reward value
calculations.

Neural DDM. The model assumes that choices are made as follows every trial.
There are two pools of neurons, which are spatially intermingled and of equal
size, with total instantaneous levels of activity given by aL(t) and aR(t), where
t indicated elapsed time from the appearance of the stimuli. At the begin-
ning of the choice process, aL(0) = aR(0) = 0. A choice is made to the res-
pective action when the level of activity in either of the two populations
surpasses a prespecified threshold. The evolution equations for each pop-
ulation are given by (Eq. 1)

aLðtÞ ¼ maxf0; aLðt − 1Þ− θ∗ aRðt − 1Þ þ d∗ðvL − vRÞ þ ηLðtÞg [1]

and (Eq. 2)

aRðtÞ ¼ maxf0; aRðt − 1Þ− θ∗ aLðt − 1Þ þ d∗ðvR − vLÞ þ ηRðtÞg [2]

where θ measures the strength of the inhibitory activity between the two
pools, d measures the sensitivity of the integration process to the underlying
true values of the stimuli (denoted by vL and vR), and the last term, η,
measures the measures the amplitude (SD) of Gaussian noise. We assume
that the height of the barriers was fixed at ±1. Note that this normalization
is without loss of generality, because the DDM is identified only up to rel-
ative values of the parameters. The psychometric curve for the best-fitting
set of parameters (d = 0.009 ± 0.005, η = 0 ± 0.035, θ = 0.2) is shown in Fig.
2C. Total activity in each trial predicted by the model is referred to asMout. SI
Materials and Methods has model estimation details.

The total activity shown in Fig. 2D was used as a modulator in some of the
GLMs of BOLD activity described below to identify areas that might be as-
sociated with the comparison process. The logic for using this variable as
a marker is described. BOLD activity in any instant in the comparator area
should be proportional to the sum of local neural activity. It follows that
average bold activity in this area from the time of stimulus onset to the time
of decision should be proportional to the average of instantaneous activi-
ties. In the analyses below, we cannot modulate activity with duration equal
to the reaction time, because our paradigm does not allow us to measure it.
Instead, we model the activity of the comparator with an equal duration in
all trials. By the previous arguments, average activity during this time should
be proportional to the total level of activity.
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fMRI Data Acquisition and Analysis. Data were acquired with a 3T scanner
(Trio; Siemens) using an eight-channel phased array head coil (details in SI
Materials and Methods). We estimated two GLMs with first-order autore-
gression for each individual subject (details in SI Materials and Methods). We
then computed contrasts of interest at the individual level using linear
combinations of the regressors. These contrast coefficients were used in one-
sample t tests for second-level group analyses.

We carried out whole-brain corrections for multiple comparisons at the
cluster level. Details of the correction for each contrast can be found in Tables
S1–S11. Small-volume correction for the vmPFC was conducted within a 10-
mm sphere centered on the vmPFC coordinates (x, y, z = −3, 42, −6) from the
work by Chib et al. (16).

DCM. We examined the connectivity between stimulus value and motor re-
sponse regions on left and right choice trials using DCM (47). The analysis was
carried out in several steps.

First, seven activation time courses were extracted from the functional
masks in vmPFC, dmPFC, dlPFC, lIPS, rIPS, lMC, and rMC in each subject from
a 4-mm sphere centered on the individual subject peak within the group

regions of interest identified by the main GLMs and shown in Fig. 3 and Figs.
S1 and Figs. S2.

Second, we specified 20 different models of potential connectivity be-
tween the seven areas of interest. A full description of the set of models is
provided in SI Materials and Methods and Tables S5–S10.

Third, we identified the best model using the Bayesian model selection
method developed in the work by Stephan et al. (44) (Fig. S3). Briefly, this
technique treats the models as random variables and computes a distribu-
tion of the probabilities for all models under consideration (additional
details in SI Materials and Methods).

Fourth, we used Bayesian parameter averaging (details in SI Materials and
Methods) (48, 49) to estimate the magnitudes and probabilities of each fixed
connection (often called intrinsic connections) as well as the magnitudes and
effects with which the connections are modulated by different events.
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SI Results
Testing for Action Value Coding in Motor Cortex. Activity in both
motor cortices increased as a function of the reward obtained by
the selected action [i.e., the left motor cortex (lMC) positively
correlated with the right value and the right motor cortex (rMC)
positively correlated with the left value; P < 0.05, corrected]
(Table S11).
Note, however, that lMC and rMC did not meet the criteria for

the encoding of action values (1, 2), which is defined as a signal
that encodes the value of an action regardless of whether it is
chosen. Post hoc tests showed that, when the opposite response
was chosen, lMC and rMC were not significantly correlated with
right [t(18) = 1.21, not significant (n.s.)] or left values (t(18) =
−0.09, n.s.), respectively.

Differences Between Neural Drift Diffusion Model Predictions of Total
Activity in Comparator Regions and Difficulty Measures. Although
these two measures are highly correlated, there are two important
differences between them, which allows us to test which of the two
parametric regressors fits better with the patterns of activity found
in areas like dorsal medial prefrontal cortex (dmPFC) and
intraparietal sulcus (IPS).
First, our neural drift diffusion model (nDDM) model predicts

greater activity in comparator regions during error than correct
trials (Fig. 2D), whereas the measure of difficulty does not dif-
ferentiate between the two trial types. Here, we define an error
trial as one in which the liquid of lower value is chosen. This
greater activity in error than correct trials arises as a function of
the noise and mutual inhibition parameters of the nDDMmodel.
Second, the difficulty measure is a simple linear function of the

difference in values, whereas the activity predicted by the nDDM
is monotonically related to the difference in values but not
perfectly linear (Fig. 2D). This nonlinearity is present even when
considering correct and error trials separately.
Motivated by these differences, we carried out a post hoc

Bayesian model selection (3) in dmPFC, dorsolateral prefrontal
cortex (dlPFC), and IPS to test whether the total activity measure
from the nDDM or the difficulty measure best explained activity
in these regions. We used the exceedance probability (EP; the
probability that a given model is more likely than any other
model in the comparison set given the group data) as our metric
for model comparison. The EP of the nDDM model was greater
than the difficulty model in all four regions (dmPFC EP = 0.99,
dlPFC EP = 0.58, lIPS EP = 0.98, and rIPS EP = 0.94), in-
dicating that the nDDM provided a better fit to activity in these
areas than the difficulty measure, especially in dmPFC and IPS.
We ran an additional model comparison to determine whether

the nDDM predictions were a better fit to blood oxygen level-
dependent (BOLD) signals in dmPFC and IPS than difficulty,
even when the distinction between correct and error trials was
removed from the parametric regressor. To create this regressor,
we assigned the parametric value of all trials as if they were
correct. The all correct nDDMparametric regressor fit the BOLD
signal better than difficulty (EP > 90%) in all regions of interest.
However, the original nDDM regressor is also more likely than
the all correct nDDM regressor (EP > 90%) in all regions of
interest, indicating that both the shape of the curve and sepa-
ration between correct and error trials are important factors in
the fit to the BOLD signal.
There is also a previous body of literature suggesting that activity

in the ventral parts of dmPFC, particularly in the anterior cingulate
cortex (ACC), plays a role in resolving response conflict and error

monitoring in a variety of tasks (4, 5). Although our results are not
fundamentally incompatible with a role for ACC in error moni-
toring or response conflict in other paradigms, neither role is likely
to explain the dmPFC activity in the current study. There are
several reasons for this finding. First, the area of dmPFC identified
here is more dorsal than the areas of ACC that have generally
been associated with these alternative signals in previous studies.
Second, response conflict in our paradigm would be the same as
the choice difficulty measure discussed above. Third, error mon-
itoring is also an unlikely function for dmPFC in our experiment,
because we see the dmPFC become active well before the re-
sponse (potentially an error) has been made.

SI Materials and Methods
Additional Stimuli and Task Details. Subjects abstained from all
liquids for 3 h before the experiment. Before entering the scanner,
subjects were asked to consume three saltine crackers to increase
their level of thirst and were also given one saltine cracker to eat
between the four functional runs to maintain thirst. Thirst ratings
were obtained before each functional run to confirm that subjects
remained thirsty throughout the task. A different colored shape
represented each flavor (apple, grape, fruit punch, and water),
with the number of shapes on the screen indicating the amount of
liquid (1 = 0.2 mL, 2 = 0.45 mL, or 3 = 0.7 mL). If the subject
failed to respond within 1.5 s after the response prompt appeared,
an option was selected at random. Stimulus presentation, res-
ponse recording, and liquid delivery were controlled using Cogent
2000 software (Wellcome Department of Imaging Neuroscience).

Liquid Delivery. Electronic syringe pumps located in the scanning
control room delivered each liquid to the subject through ∼10 m
polyethylene tubing and a perfusion manifold. The perfusion
manifold allowed four incoming tubes to be connected to one
output tube with a minimum of dead space to avoid mixing the
liquids. The subjects held the output tube between their lips like
a straw while lying in the supine position inside the MRI scanner.
Visual stimuli were presented using an overhead mirror and
projection system.

Value of Liquid Rewards. We determined the subjective value of
each liquid reward option using the individual’s pattern of
choices. The value of each flavor–amount combination was cal-
culated using the equation V= F × A, where V is the value of the
option, F is the frequency with which that flavor was selected
regardless of the amount offered, and A is the amount of liquid
offered. All of the other value signals used in the analysis were
derived from this basic calculation. In particular, the stimuli
value (SV) for each trial was equal to the sum of the values for
the available options (left value + right value). Action value left
(right) was equal to the left (right) value. Chosen value (CV) was
equal to the value of the chosen option, whereas nonchosen
value (NCV) was equal to the value of the nonchosen option.

nDDM Estimation Procedure. The nDDM model assumes that the
comparator system contains two identical pools of neurons: one
encoding the relative value signal for left (i.e., value of left minus
value of right) and one encoding the relative value signal for right
(i.e., valueof rightminus valueof left).Themodel alsoassumes that
activity in eachof thepools commences at a zero level and that each
of them changes after a GaussianMarkovian process similar to the
one for theDDM,except that they are not allowed to go below zero
at anypoint during thedecisionprocess. Finally, themodel assumes
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that a choice is made in favor of its respective option when one of
the two pools reaches a prespecified threshold level of activity and
that the two pools dynamically inhibit each other.
We calibrated the model to the psychometric group choice data

by simulating the model 5,000 times with different parameter sets
and selecting the parameters that maximized the fit between the
simulated and actual choice curves. Maximal fit was evaluated
using a sum of square deviations criterion, including a weighting
term for each level of jVL − VRj that was inversely proportional to
its frequency in the dataset. This calculation was done by
searching among combinations of the following free parameters:
mean and SD of the integration slope (d), SD of the Gaussian
noise (η), and inhibition strength (θ). The psychometric curve for
the best-fitting set of parameters (d = 0.009 ± 0.005, η = 0 ±
0.035, θ = 0.2) is shown in Fig. 2C. We used the group choice
data, because it leads to less noisy choice curves and therefore,
generated more reliable estimates of the parameters of the
nDDM.
We then used this set of parameters to estimate the dis-

tributions of total activity in both pools of comparator neurons by
simulating the model 5,000 times for each combination of value
differences. Total activity is defined to be as the sum of in-
stantaneous levels of activity in both pools of neurons from
stimulus onset to choice. Fig. 2D depicts summary statistics for
the resulting distributions for both correct and error trials. The
value of total activity in each trial predicted by the model is
referred to as Mout.
We note one caveat to applying the nDDM to this dataset.

Ideally, the experiment would have had free reaction times, which
would have helped us to estimate the nDDM parameters more
precisely, because the model makes predictions for both the
accuracy and reaction time of choices. Because reaction time data
are not available in our design, we fitted the nDDMusing only the
choice data. The lack of reaction time data likely introduces noise
in our parameter estimates for the model and thus, reduces our
ability to identify comparator regions using fMRI, but it does not
introduce any systematic biases in our analyses.

Functional MRI Data Acquisition. The functional imaging was con-
ducted using a Siemens 3.0 Tesla Trio MRI scanner. We acquired
gradient echo T2*-weighted echoplanar images (EPIs) with
BOLD contrast. To optimize functional sensitivity in the orbito-
frontal cortex (OFC), we used a tilted acquisition in an oblique
orientation of 30° to the anterior commissure–posterior commis-
sure line (6). In addition, we used an eight-channel phased array
coil that yields a 40% signal increase in signal in the OFC over
a standard head coil. Each volume comprised 48 axial slices col-
lected in an interleaved-ascending manner. Data were collected in
four sessions (209 volumes, ∼11 min). The imaging parameters
were echo time, 30 ms; field of view, 192 mm; in-plane resolution
and slice thickness, 3 mm; repetition time, 3 s. Whole-brain, high-
resolution T1-weighted structural scans (1 × 1 × 1 mm) were ac-
quired from the 20 subjects and coregistered with their mean EPI
images; they were averaged together to permit anatomical locali-
zation of the functional activations at the group level.

Functional MRI Data Preprocessing. Image analysis was performed
using SPM8 (Wellcome Department of Imaging Neuroscience).
Images were corrected for slice acquisition time within each
volume, motion-corrected, spatially normalized to the standard
Montreal Neurological Institute EPI template, and spatially
smoothed using a Gaussian kernel with a full width at one-half
maximum of 8 mm. Intensity normalization and high-pass tem-
poral filtering (using a filter width of 128 s) were also applied to
the data.

General Linear Models. We estimated the following general linear
model of BOLD responses to identify regions reflecting stimulus

values, action values, and motor responses. This process was done
in three steps.
First, for each individual, we estimated a general linear model

(GLM) with first-order autoregression and the following nine
indicator functions: R1, initial stimulus screen; R2, choice re-
sponse period (CR); R3, left button press; R4, right button press;
R5, juice delivery; R6–9, presence of each preference ranked
juice (based on each subject’s choices) on the stimulus screen.
The stimulus screen, juice delivery, and preference ranked in-
dicators were modeled as events with 1-s durations. The CR
period was modeled as an event with duration equal to the
elapsed time between the onset of the choice screen and the
button press on that trial (5–9.5 s). Left and right button presses
were modeled with durations equal to the reaction time as
measured by the time elapsed between the appearance of the
response screen and the button press. In addition to the nine
indicator functions, the model included four parametric re-
gressors: (i) choice screen × SV, (ii) CR × left V, (iii) CR × right
V, and (iv) juice delivery × CV. The model also included session
constants and motion parameters as regressors of no interest.
Second, we calculated first-level, single-subject contrasts for

each of the four parametric regressors listed above.
Third, we calculated second-level group contrasts using one-

sample t tests on the single-subject contrasts. We carried out
whole-brain corrections for multiple comparisons at the cluster
level. Details of the correction for each contrast can be found in
Tables S1–S11. Small-volume correction for the ventromedial
prefrontal cortex (vmPFC) was conducted within a 10-mm
sphere centered on the vmPFC coordinates (x, y, z = −3, 42, −6)
from the work by Chib et al. (7).
We estimated a second GLM to identify regions reflecting the

output of our nDDM model. This model included the same in-
dicator functions as the first GLM and the following parametric
regressors: (i) choice screen × SV, (ii) CR × Mout, and (iii) juice
delivery × CV. All omitted details are as detailed.

Post Hoc Analyses.To determine if stimulus location (left vs. right),
choice (chosen vs. nonchosen), or identity (liquid 1–4) affected its
association with vmPFC activity, we computed three additional
GLMs. All of these GLMs included the same three indicator
functions of (R1) choice screen, (R2) response screen, and (R3)
juice delivery. The location model included parametric modu-
lators for left V and right V for each indicator function. The
choice model included parametric modulators for CV and NCV
for each indicator function. There was little correlation between
left value and right value (mean r = −0.187) or CV and NCV
(mean r = 0.183). The identity model included parametric
modulators for the value of each liquid for each indicator
function. Liquid values were set to zero on trials where they were
not offered.
First-level, single-subject contrasts were created for the para-

metric modulators left V, right V, chosen V, nonchosen V, and
the value of each liquid at the time of choice screen onset. These
single-subject contrast values were then averaged across all
voxels shown in Fig. 3A and compared using paired t tests.
To test whether activity in dmPFC, dlPFC, and Par was more

associated withMout or difficulty (jleft V − right Vj), we estimated
an additional GLM. This GLM was identical to the second GLM
except that the parametric modulator for Mout from the previous
model was replaced with jleft V − right Vj.
Post Hoc Comparison of Fits for nDDM and Difficulty GLMs. We
created functional masks in dmPFC, dlPFC, and left and right Par
from all voxels in those regions correlating withMout and difficulty
(conjunction threshold P < 0.005, uncorrected for each contrast).
Next, we reestimated both GLMs using the Bayesian first-level
estimation techniques incorporated into SPM8 and previously
described in detail in the work by Penny et al. (8). Last, we used
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a random effects Bayesian model selection procedure to de-
termine exceedance probabilities that indicated whether theMout
or difficulty models provided a better fit to the data in each of
the three regions. A brief description of this method is given in
Materials and Methods on dynamic causal modeling, and addi-
tional details can be found in two recent papers (3, 9).

Dynamic Causal Modeling Description. For all 20 models tested, the
driving inputs to all regions were assigned based on the results
from the univariate GLMs and were not mean-centered (i.e., the
fixed coupling parameters represent connectivity in the absence of
task stimulation). Those inputs included five inputs: (i) an input
of constant magnitude into vmPFC and dlPFC during stimulus
presentation, (ii) an input to vmPFC during stimulus pre-
sentation proportional to the sum of the stimulus values, (iii) an
input into dmPFC, dlPFC, and bilateral IPS of constant magni-
tude during the period from stimulus onset to button press for
left choices, (iv) an input into dmPFC, dlPFC, and bilateral IPS
of constant unit magnitude during the period from stimulus
onset to button press for right choices, and (v) an input of
constant value into lMC and rMC at the time of response. Pa-
rameter estimates for the inputs to each region are shown in
Table S10. In addition, all of the models allowed for the fol-
lowing event-related changes in coupling strength: (i) the cou-
pling from vmPFC to dmPFC, dlPFC, and parietal cortex was
allowed to be influenced by the onset of the stimulus screen
(unmodulated), (ii and iii) left and right CR periods were al-
lowed to modulate coupling in all existing connections, and (iv)
button presses were allowed to modulate self-connections in
lMC and rMC. To carry out these analyses, we estimated an
additional GLM that was identical to the first GLM described in
Materials and Methods except that the CR period was separated
into right and left choice trials, the choice screen was modeled
with an indicator function of 2-s duration, and the indicators for
each preference-ranked juice were omitted.

Bayesian Model Selection for Dynamic Causal Modeling. We identi-
fied the best model using the Bayesian model selection method
developed by Stephan et al. (3). Briefly, this technique treats the
models as random variables and computes a distribution of the
probabilities for all models under consideration. The probabili-
ties can be used to define a multinomial distribution over model
space from which the likelihood that a specific model generated
the data of a randomly selected subject can be estimated. This
procedure permits the computation of the exceedance proba-
bility for each model in the comparison set, which measures the
probability that each model is the most likely one to be correct.
Note that the exceedance probabilities add to one over the
comparison set and thus, generally decrease as the number of
models considered increases. We posited 20 different models of
connectivity involving the seven areas identified above (vmPFC,

dmPFC, dlPFC, lMC, rMC, lIPS, and rIPS) and used a Bayesian
model selection process to identify the most probable model in
the set (Fig. S3). The set of alternative models is described in
detail in Tables S5–S10. We specified a large set of models,
because given existing data, we did not have strong priors about
the exact pattern of connectivity in the network. The set of
models considered included the model depicted in Fig. 4 and
most variations where vmPFC, dlPFC, and IPS are disconnected
from sets of one or two other regions, including motor cortex.

Bayesian Parameter Averaging. Here, we present the equations
underlying the Bayesian parameter averaging method that we
used to make inferences about the modulatory dynamic causal
modeling parameters at the group level. As stated in the work by
Kasess et al. (10) and in other works (11, 12), this procedure
treats the posterior distribution for one subject as the prior for
the next subject. The process continues up to the nth subject,
resulting in the following expression (S1):

pðθjy1; . . . ; yNÞ∝ pðθÞ∏
N

i¼1
pð yijθÞ

∝ pðθjy1Þ∏
N

i¼2
pðyijθÞ

∝ pðθjy1; . . . ; yN − 1Þ ∏
N

i¼N
pð yijθÞ

[S1]

Under Gaussian assumptions about the densities, which is the
case in dynamic causal modeling, the procedure can be simplified
using a reduced form, where subject-specific conditional param-
eter densities are weighted by their precision and summed across
subjects (Eq. S2):

μ ¼ Λ− 1
XN

i¼1

Λiμi [S2]

and (Eq. S3)

Λ ¼
XN

i¼1

Λi [S3]

where μi is the posterior mean of the ith subject and ΛI = Σi
−1 is

the inverse posterior covariance or precision matrix. The matrix
Λ represents not only the precisions of the model parameters (on
the diagonal) but also the interdependence of the parameters
(off-diagonal elements). The incorporation of the within subjects
estimation precision is an advantage of Bayesian parameter av-
eraging over frequentist approaches (e.g., one-sample t test) that
do not include any measure of within subject variance.

1. Lau B, Glimcher PW (2008) Value representations in the primate striatum during
matching behavior. Neuron 58:451e463.

2. Wunderlich K, Rangel A, O’Doherty JP (2009) Neural computations underlying
action-based decision making in the human brain. Proc Natl Acad Sci USA 106:
17199e17204.

3. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model
selection for group studies. Neuroimage 46:1004e1017.

4. Botvinick MM (2007) Conflict monitoring and decision making: Reconciling two
perspectives on anterior cingulate function. Cogn Affect Behav Neurosci 7:356e366.

5. Carter CS, van Veen V (2007) Anterior cingulate cortex and conflict detection: An
update of theory and data. Cogn Affect Behav Neurosci 7:367e379.

6. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies
of the orbitofrontal cortex. Neuroimage 19:430e441.

7. Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence for a common
representation of decision values for dissimilar goods in human ventromedial pre-
frontal cortex. J Neurosci 29:12315e12320.

8. Penny WD, Trujillo-Barreto NJ, Friston KJ (2005) Bayesian fMRI time series analysis
with spatial priors. Neuroimage 24:350e362.

9. Rosa MJ, Bestmann S, Harrison L, Penny W (2010) Bayesian model selection maps for
group studies. Neuroimage 49:217e224.

10. Kasess CH, et al. (2010) Multi-subject analyses with dynamic causal modeling.
Neuroimage 49:3065e3074.

11. Neumann J, Lohmann G (2003) Bayesian second-level analysis of functional magnetic
resonance images. Neuroimage 20:1346e1355.

12. Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal
modelling of evoked potentials: A reproducibility study. Neuroimage 36:571e580.

Hare et al. www.pnas.org/cgi/content/short/1109322108 3 of 11

www.pnas.org/cgi/content/short/1109322108


Fig. S1. Motor regions associated with left and right action selection. (A) Activity in the left motor cortex was greater when selecting the right juice reward
with the right thumb than when selecting the left juice reward with the left thumb (P < 0.05, whole-brain corrected). (B) Activity in the right motor cortex was
greater when selecting the left juice reward with the left thumb than when selecting the right juice reward with the right thumb (P < 0.05, whole-brain
corrected).

Fig. S2. Area of left dlPFC in which activity was also correlated with the predicted levels of activity generated by the nDDM at P < 0.05, whole-brain corrected.

Fig. S3. Exceedance probabilities for the 20 alternative connectivity models. This measure represents the probability that each model is the most likely one to
be correct among the set of models tested. The numbers on the x axis correspond to the numbering of the models in Table S4. The most probable model
(dynamic causal model 1) is shown in Fig. 4 and Tables S5–S10.
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Table S1. Regions correlating with stimulus values

Region BA Side Cluster size x y z Z score

Occipital cortex 19/18 B 3,272 −18 −94 13 5.33*
Hippocampus Left 37 −18 −25 −8 3.94
Hippocampus/amygdala Right 47 12 −7 −11 3.72
Medial orbitofrontal/anterior cingulate cortex 10 Left 48 −6 44 −5 3.55†

Superior parietal lobule 7 Right 34 21 −70 46 3.37

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold t = 2.88, extent = 134
voxels).
†Survives small-volume correction within a 10-mm sphere centered on the vmPFC coordinates (x, y, z = −3, 42, −6) from the work of
Chib et al. (1).

Table S2. Regions reflecting motor responses

Region BA Side Cluster size x y z Z score

Regions showing greater responses for left vs. right responses
Cerebellum Left 968 −12 −52 −23 5.4*
Precentral gyrus 6/4/3 Right 1,188 42 −19 67 5.22*
Rolandic operculum/insula 13 Right 100 45 −19 19 3.99
Middle temporal gyrus 21 Left 44 −66 −43 −11 3.36
Putamen Right 61 27 −10 4 3.3

Regions showing greater responses for right vs. left responses
Precentral gyrus 4/3/6 Left 749 −45 −34 64 4.33*
Cuneus 18 Right 37 18 −97 7 3.75
Fusiforn gyrus 19 Right 29 21 −64 −14 3.60
Cerebellum Right 47 21 −49 −23 3.35

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold t = 2.88, extent = 137
voxels).

Table S3. Regions reflecting the pattern of activity predicted by the DDM implementation

Region BA Side Cluster size x y z Z score

Parietal cortex (IPS) 40/7 Left 483 −30 −70 55 4.27*
Insula 13/47 Left 53 −30 17 4 4.21
Middle/inferior frontal gyrus 46/10 Left 364 −51 35 19 4.17*
Parietal cortex (IPS) 40/7 Right 379 30 −49 40 3.92*
Medial frontal/cingulate gyrus 6/32 Right 193 0 14 58 3.86*
Inferior temporal lobe 37/20 Left 64 −54 −58 −17 3.82
Middle/inferior frontal gyrus 10/46 Right 125 42 41 10 3.77
Anterior cingulate cortex 24 Right 29 0 2 25 3.59
Precentral gyrus 6 Left 37 −45 −4 43 3.57
Lingual gyrus 18 Left 25 −12 −79 −8 3.55
Precentral gyrus 6 Left 32 −60 −10 40 3.47
Cerebellum Left 95 −33 −67 −38 3.46
Inferior temporal lobe 17/18/19 Right 82 33 −70 −8 3.25
Precuneus 7 Right 23 12 −70 49 3.08
Thalamus Left 27 −15 −13 13 3.07
Precuneus 7 Left 44 −6 −67 55 2.94
Posterior cingulate cortex 23 Right 20 6 −31 22 2.93

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold
t = 2.88, extent = 126 voxels).

1. Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J Neurosci 29:
12315e12320.
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Table S4. Alternative dynamic causal models tested

Region vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

DCM 1
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 2
vmPFC 1 0 1 1 1 0 0
dmPFC 0 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 3
vmPFC 1 1 0 0 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 0 1 1 1 1 0 0
rIPS 0 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 4
vmPFC 1 1 1 1 0 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 0 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 5
vmPFC 1 1 0 0 0 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 0 1 1 1 1 0 0
rIPS 0 1 1 1 1 0 0
dlPFC 0 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 6
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 1 0 0
lIPS 1 0 1 1 1 0 0
rIPS 1 0 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 7
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 8
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 0 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 0 1 1 1 0 0
lMC 0 1 1 1 1 1 1
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Table S4. Cont.

Region vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

rMC 0 1 1 1 1 1 1
DCM 9

vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 0 0 0
lIPS 1 0 1 1 1 0 0
rIPS 1 0 1 1 1 0 0
dlPFC 1 0 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 10
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 0 1 1 1 1 1
rMC 0 0 1 1 1 1 1

DCM 11
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 0 0 1 1 1
rMC 0 1 0 0 1 1 1

DCM 12
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 0 0 0 1 1
rMC 0 1 0 0 0 1 1

DCM 13
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 0 1 1 1 0 0
rIPS 1 0 1 1 1 0 0
dlPFC 1 0 1 1 1 0 0
lMC 0 1 0 0 0 1 1
rMC 0 1 0 0 0 1 1

DCM 14
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 0 0 0
rIPS 1 1 1 1 0 0 0
dlPFC 1 1 0 0 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 15
vmPFC 1 1 0 0 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 16
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0

Hare et al. www.pnas.org/cgi/content/short/1109322108 7 of 11

www.pnas.org/cgi/content/short/1109322108


Table S4. Cont.

Region vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

dlPFC 1 1 1 1 1 0 0
lMC 0 1 0 1 1 1 1
rMC 0 1 1 0 1 1 1

DCM 17
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 0 1 1
rMC 0 1 1 1 0 1 1

DCM 18
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 0 0 0
rIPS 1 1 1 1 0 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

DCM 19
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 1 1 1 0 0
lIPS 1 1 1 1 1 0 0
rIPS 1 1 1 1 1 0 0
dlPFC 1 1 1 1 1 0 0
lMC 0 0 0 0 1 1 1
rMC 0 0 0 0 1 1 1

DCM 20
vmPFC 1 1 1 1 1 0 0
dmPFC 1 1 0 0 0 0 0
lIPS 1 0 1 0 0 0 0
rIPS 1 0 0 1 0 0 0
dlPFC 1 0 0 0 0 0 0
lMC 0 1 1 1 1 1 1
rMC 0 1 1 1 1 1 1

Connection directionality moves from columns to rows as the arrows in-
dicate. Existing connections are represented by ones, whereas zeros indicate
no connection between regions. DCM, dynamic causal modeling.
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Table S9. Modulation of coupling parameters at the time of response

vmPFC ⇒ dmPFC ⇒ lIPS ⇒ rIPS ⇒ dlPFC ⇒ lMC ⇒ rMC ⇒

vmPFC — — — — — — —

dmPFC — — — — — — —

lIPS — — — — — — —

rIPS — — — — — — —

dlPFC — — — — — — —

lMC — — — — — 0.01 (σ2 = 0.2e−3; Pm = 0.76) 0 (σ2 = 0.2e−3; Pm = 0.55)
rMC — — — — — 0 (σ2 = 0.2e−3; Pm = 0.58) 0.01 (σ2 = 0.2e−3; Pm = 0.76)

Each cell provides statistics for the connection from the column area to the row area. σ2, sample variance; P, probability that the
specified input drives activity in the given region; Pc, probability that the absolute value of the coupling parameter is greater than zero
[note that the absolute magnitude of coupling parameters is relative to the driving inputs and will change based on the scale of any
parametric modulator (e.g., stimulus value) used as a driving input to the model]; Pm, probability that the coupling parameter is
modulated by task condition. The effect size for these parameters should be evaluated relative to the magnitude of the fixed coupling
parameters. Parameters with a posterior probability greater than 90% are shown in bold. All values are rounded to two decimals.

Table S10. Parameter estimates for each task related input by region

Stimulus presentation Stimulus value CR left CR right Button press

vmPFC −0.01 (σ2 = 0.01e−3; P = 0.9) 0.04 (σ2 = 0.23e−3; P = 0.99) — — —

dmPFC — — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

lIPS — — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

rIPS — — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

dlPFC −0.01 (σ2 = 0.01e−3; P = 0.99) — 0.01 (σ2 = 0e−3; P = 1) 0.01 (σ2 = 0e−3; P = 1) —

lMC — — — — 0.07 (σ2 = 0.14e−3; P = 1)
rMC — — — — 0.07 (σ2 = 0.17e−3; P = 1)

Each cell provides statistics for the connection from the column area to the row area. σ2, sample variance; P, probability that the specified input drives
activity in the given region; Pc, probability that the absolute value of the coupling parameter is greater than zero [note that the absolute magnitude of
coupling parameters is relative to the driving inputs and will change based on the scale of any parametric modulator (e.g., stimulus value) used as a driving
input to the model]; Pm, probability that the coupling parameter is modulated by task condition. The effect size for these parameters should be evaluated
relative to the magnitude of the fixed coupling parameters. Parameters with a posterior probability greater than 90% are shown in bold. All values are
rounded to two decimals.

Table S11. Regions correlated with right and left value across all trials

Region BA Side Cluster size x y z Z score

Region correlated with left value
Precentral gyrus 3/4 Right 179 48 −19 64 4.15*

Region correlated with right value
Precentral gyrus 6/4/3 Left 1,073 −42 −19 61 4.88*
Medial frontal gyrus 9/8 Right 176 24 29 37 4.45*
Rolandic operculum/insula 13 Left 149 −42 −28 19 4*
Inferior frontal gyrus 10/46 Right 25 48 53 4 3.67
Middle temporal gyrus 39 Right 21 45 −82 25 3.64
Cerebellum Right 57 12 −85 −29 3.58
Orbitofrontal cortex 10 Left 37 −21 50 −5 3.51
Occipital cortex 19 Left 20 −12 −97 34 3.09

Height threshold t = 2.88; extent threshold = 20 voxels (3 × 3 × 3 mm). BA, Brodmann area.
*The activation survives whole-brain correction for multiple comparisons at the cluster level (height threshold
t = 2.88, extent = 178 voxels for the left value, extent = 122 voxels for the right value).
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