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Most economists and neuroeconomists believe 
that individuals make choices !rst by assign-
ing values to objects and then by selecting the 
option with the highest value, perhaps with 
some noise (Rangel, Colin Camerer, and Read 
Montague 2007). This raises a question with 
important implications for economics: How 
does the brain compute the values that guide 
decisions (henceforth called decision values) 
and what are the properties of those processes? 
Important and more concrete examples of these 
questions include the following: Does the brain 
always assign values to objects that are com-
mensurate with the bene!ts that they generate, 
or does it make mistakes sometimes? Does the 
amount of time spent computing the value mat-
ter? Are there incidental variables, such as the 
way an object is displayed at the time of sale, 
that affect the value that is assigned to it?

The properties of the brain’s value computa-
tion processes should be of interest to econo-
mists since those properties determine the extent 
to which individuals are able to make quality 
choices. In addition, the properties of these pro-
cesses could have important implications for the 
behavioral and welfare effects of practices such 
as in-store marketing.

In this paper we explore these questions 
theoretically and experimentally. We propose 

/&630&$0/0.*$�.0%&-4�0'�&$0/0.*$�%&$*4*0/�.",*/(†

5IF�*NQBDU�PG�$PNQVUBUJPO�5JNF�BOE�&YQFSJFODF��
PO�%FDJTJPO�7BMVFT

By K. Carrie Armel and Antonio Rangel*

a simple model of how computation time and 
experience can affect the value that is assigned 
to items. The model makes several stark predic-
tions that we test using behavioral experiments.

The impact of computation time and expe-
rience on valuation is a new question in eco-
nomics, but not in psychology or behavioral 
neuroscience. In particular, several models 
have been proposed of how the brain makes 
binary choices by aggregating information over 
time (see Rafael Bogacz (2007) and Rangel 
(forthcoming) for reviews). Interestingly, some 
of these models have received considerable 
empirical support in both human behavioral 
and monkey electrophysiology experiments.
This paper makes several contributions to that 
literature. First, we develop a model of valua-
tion for a single item. In contrast, all the exist-
ing models apply only to binary choice. Second, 
the model we propose is based on ideas from 
optimal Bayesian inference. In contrast, previ-
ous models often assume computational pro-
cesses that are not linked to optimal inference. 
Third, although there is a large experimental 
literature on reaction times and choice, the role 
of computation time on valuation has not been 
studied. Fourth, our work is also related to the 
psychology literature on the Mere Exposure 
Effect (Robert F. Bornstein 1989; Robert B. 
Zanjonc 1968, 2001) which studies the impact 
of passive exposure to a typically neutral and 
unfamiliar item, such as a Chinese ideogram, 
on subsequently reported liking-ratings. In 
contrast, we look at how experience comput-
ing the value of an item affects subsequent 
valuations. Finally, our work is more generally 
related to the literature on the construction of 
preference in behavioral economics (see Sarah 
Lichtenstein and Paul Slovic (2006) for a com-
pendium of articles).
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I. A Model of the Computation  
of Decision Values

Consider the problem of an organism that 
needs to evaluate an item in order to make a 
choice. Items differ on the consumption value 
that they generate. Consumption values are dis-
tributed normally with mean 0 and variance 
t2. The organism needs to forecast the value 
of items before consuming them. We call these 
forecasts decision values (DVs).

A central feature of the model is that the 
computed DVs are only noisy estimates of the 
actual value of consumption. In particular, we 
assume that when evaluating an item the brain 
can obtain only one noisy estimate of the true 
consumption value per unit of time. Let ut 
denote the estimate at time t. We assume that 
(a) the estimates are distributed normally with 
variance s2 and mean m equal to the consump-
tion value of the item being evaluated; and (b) 
the estimates are independently distributed. 
Let d 1u 2 denote the DV that is computed after 
t measurements u5 1u1, … , ut 2 , and m 1u 2 denote 
the mean measurement.

The key assumption of the model is that the 
processes computing DVs are consistent with 
Bayesian updating. In particular, we assume that 
d 1u 2 is equal to the mean of the posterior distri-
bution of Bayesian beliefs about the item’s true 
consumption value. The posterior distribution 
is normal and its mean and variance are given, 
respectively, by

 
t t2m 1u 2

s2 1 t t2  and  
s2

 t2

s2 1 t t2  .

Note that d 1u 2 is a random variable since it 
depends on the sample of measurements, and 
that it incorporates the priors. Let f 1t Z m 2 
denote the expected value of d 1u 2 after t units 
of computation time for an item with consump-
tion value m. This function, which describes the 
average impact of computation time on DVs, is 
given by

 f 1t Z m 2 5   
t t2m

s2 1 t t2  ,

Figure 1 describes the dynamics of the DV 
signal for items with consumption values  
m11 . m1 . 0 . m2 . m22 and provides intu-
ition for the predictions listed below. The solid 
lines depict the path of the expected DV signal 

f 1t Z m 2 . The dashed lines depict potential real-
izations of d 1u 2 . Note a few things about these 
paths. First, at t 5 0 the DV is equal to the mean 
consumption value in the population. Second, 
the expected DV function f 1t Z m 2 converges 
asymptotically to the consumption value of the 
item. Third, d 1u 2 -uctuates around the average 
DV, but the amount of noise goes to zero over 
time. Finally, the impact of computation time 
is increasing on the absolute value of m, and is 
zero for items with m 5 0.

So far we have assumed that the speed at 
which the organism can take measurements is 
!xed and independent of experience. However, 
cognitive psychologists have identi!ed many 
instances in which cognition, perception, and 
memory improve with experience. We model 
this by assuming that previous experience might 
increase the speed at which measurements can 
be taken. More concretely, let g 1t Z e 2 denote 
the number of measurements taken in the !rst t 
units of time given the level of experience e. We 
say that the process exhibits positive experience 
effects if g 1t Z e 2 . g 1t Z e92 whenever e . e9.

The following predictions follow directly 
from the previous discussion and will be tested 
in the experiments:

 • Attention Duration Effect (ADE). The impact 
of computation time depends on the valence 
of the item: the effect is positive for positive 
items (i.e., items with positive true consump-
tion values), negative for negative items, and 
constant for neutral items. Furthermore, the 
effect of computation time is stronger for 
more liked (or disliked) items.

•    Previous Experience Effect (PEE). If the DV 
computation process exhibits positive experi-

Figure 1. Dynamics of the DV Signal for Items with 
Different Consumption Values
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ence effects, then the computed DV increases 
with experience for positive items, decreases 
for negative items, and has no effect for neu-
tral items. Furthermore, the effect of expo-
sure is stronger for more liked (or disliked) 
items.

•   Ampli!cation Effect (AE). The difference 
between the DV of items with different under-
lying consumption values increases with 
computation time.

Note that the basic mechanism at work in the 
model is simple. The goal of the DV processes 
is to compute quality forecasts of the actual 
consumption value of items. The problem is 
that (a) it takes time to make the required mea-
surements, and (b) the measurement processes 
are noisy. If the processes are consistent with 
Bayesian updating, computation time matters 
because, by increasing the amount of measure-
ments that are taken, it decreases reliance on 
priors and allows the process to average out the 
noise. Experience matters because it speeds up 
the required computations.

It is important to emphasize that the model 
applies equally well to unconscious and conscious 
processes, as long as the computations that they 
implement are consistent with the model. In par-
ticular, the model does not assume that the organ-
ism is consciously and intentionally computing 
Bayesian updates. These computations could be 
performed by low-level unconscious processes. 
In fact, evidence for embedded Bayesian updat-
ing at low levels of processing has been found 
in the sensorimotor domain (Konrad P. Kording 
and Daniel M. Wolpert 2006).

Next, we describe the results of three experi-
ments designed to test the three predictions 
listed above.

II. Experiment 1

In this experiment (N 5 77) undergradu-
ates purchased appetitive foods by placing 
bids on a Becker-DeGroot Mechanism. (See 
the Web Appendix, www.aeaweb.org/articles.
php?doi=10.1257/aer.98.2.163, for a detailed 
description of the experiments and for !gures 
describing the results.) All of the items were 
junk foods (e.g., candy bars) and were presented 
using high-resolution photographs in which 
both the food and packages were visible. There 

were three parts to the experiment. First, sub-
jects received an endowment of $10 that they 
could use to purchase food by placing bids on 
70 different food items. Second, they provided 
a liking-rating for each food. Finally, one of the 
bidding trials was selected by drawing a ball 
from an urn. That was the only trial that counted. 
At the end of the experiment, subjects stayed in 
the lab an additional 30 minutes; during this time 
they were allowed to eat as much as they wanted 
of the food they purchased from us, but no other 
food or drinks were allowed. Note that since 
only one of the trials counted, subjects treated 
each decision as if it were the only one, and thus 
they could bid up to $10 every time.

A key feature of Part 1 of the experiment is 
that items were presented for a predetermined 
amount of time before subjects were allowed to 
enter their bids by clicking a mouse. Subjects 
bid twice on each food item. The bidding task 
was divided into two parts. In the !rst half of the 
trials, each food item was presented in random 
order for 500 ms. After subjects had placed bids 
on all foods at that duration, the items were pre-
sented in random order a second time for either 
500, 2,000, 3,500, 5,000, or 6,500 ms. During 
the liking-rating trials, items were shown in ran-
dom order for 3,000ms. Subjects then had unlim-
ited time to type their liking-rating according to 
a scale of 250 (“worst food ever tasted”) to 50 
(“best food ever tasted”), where 0 denotes a neu-
tral item.

Several aspects of the design are worth 
emphasizing. First, every item was presented 
twice: the !rst time at 500ms, and the sec-
ond time at either 500, 2,000, 3,500, 5,000, or 
6,500 ms. Presenting items twice allowed us to 
test for the presence of PEEs. Presenting the 
items at different lengths on the second pre-
sentation allowed us to test for the presence 
of ADEs. Second, we controlled computation 
time by manipulating the amount of time that 
items were displayed on the computer screen. 
We asked the subjects to look at the item the 
entire time that it was displayed, but we did 
not collect a measure of compliance. Third, we 
used the liking-rating measure collected at the 
end of the experiment as our measure of the 
true consumption value of the items. This is 
justi!ed by the model: when the computation 
time is kept constant for all items, on average 
the resulting DVs provide an ordinally correct 
ranking of the items.
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The results described below are based on the 
estimation of the following mixed effects linear 
model:

bid-diffi, t 5 constant 

 1 a 1exposure-timei, t – 0.52

 1 a
k50.5, 2, 3.5, 5, 6.5

bk 1Ik
i, t · liking-ratingi, t2 ,

where i indexes subjects, t indexes items, expo-
sure-time denotes the presentation time of the 
picture during the second part, I k is an indicator 
function for the exposure time k, liking-rating 
is the rating for the item provided by the subject 
at the end of the experiment, and bid-diffi, t is 
the change in bid between the !rst and second 
parts of the experiment for item t and subject 
i. Note that this model allows the change in bid 
to depend both on the exposure time and on the 
liking-rating of the items. This last feature is 
important because, as we will see, the PEE and 
the ADE change signi!cantly with the under-
lying value of the item. The estimates of this 
model provide tests for the predictions listed 
above. The PEE for an item with a liking-rating 
of l is given by constant 1 b0.5l. The ADE gen-
erated by increasing exposure from t to t9 sec-
onds for an item with liking-rating l during the 
second presentation is given by a 1t9 – t 2 1 l 1bt9 
– bt 2 . All the results described below are based 
on these three estimates.

The results of the experiment were as fol-
lows. First, the estimated PEE was positive 
and increased with the liking-rating; it was not 
signi!cant for neutral items (M 5 7.3 cents,  
p 5 0.28) and low-valued items, but it was 17.72 
cents (p 5 0.115) for the most liked items. 
Figure S2(a) in the Web Appendix plots the esti-
mated PEE and 95 percent con!dence intervals 
for items with different liking-ratings. Second, 
at exposures of 2,000 and 3,500 ms, there was 
a positive and signi!cant ADE for most items 
except for neutral ones. For example, the effect 
at 3,500 ms was 43 cents ( p , 0.001) for the 
most liked items, which is close to the retail 
price for the median item used in the experi-
ment. Figure S2(b) in the Web Appendix plots 
the estimated ADE for different liking-ratings. 
Third, since the ADE increased with the liking-
ratings, there was an AE. In fact, the difference 
in computed DVs between items with the maxi-
mum and minimal liking-ratings, a variable that 

we refer to as the spread, changed between the 
!rst exposure (at 500 ms) and a second exposure 
at 3,500 ms by 49.2 cents (p , 0.000).

Two additional results are shown in the Web 
Appendix. Figure S2(c) plots the net change in 
bids that resulted between the !rst presenta-
tion at 500 ms, and the second presentation at 
3,500 ms. The net effect on bids was positive and 
sizable at all levels and increased with the lik-
ing-rating. For neutral items, the net effect was 
11.5 cents (p , 0.05). For the most liked items, 
it was 60.7 cents (p , 0.000). Figure S2(d) plots 
the marginal attention duration effect that results 
from increasing exposure by 1.5s for an item at 
the top of the liking-rating scale. The !rst three 
seconds of exposure have a substantial impact 
on the bids, whereas the last three seconds have 
negligible effects. This is consistent with the 
model, which predicts an asymptotic effect of 
computation time on DVs.

III. Experiment 2

This experiment uses a variation of the previ-
ous design to test the predictions of the model 
for negative items. Subjects (N 5 59) placed 
bids to avoid having to eat food items that they 
disliked. The key difference with Experiment 1 
is that items were now aversive instead of appe-
titive. The stimuli included items such as Spam 
and spinach baby food. The bids served as our 
measure of the negative DVs. The procedures 
were similar to those for Experiment 1. Subjects 
were told at the beginning of the experiment that 
they would have to eat !ve spoonfuls of the item 
shown in a randomly selected trial. They were 
also endowed with $10 that they could use to bid 
for avoiding having to eat the item.

The data were analyzed using the same 
method as in Experiment 1. First, the estimated 
PEE was negative and the more disliked the 
item, the higher the subject’s willingness to pay 
to avoid eating it. As shown in Figure S3(a), 
the PEE was marginally signi!cant for neu-
tral items (m 5 29.8 cents, p 5 0.08), but it 
was 61.9 cents (p , 0.01) for the most disliked 
items. Second, for the 5,500 ms exposure, the 
ADE was negative and insigni!cant for highly 
disliked items, but positive and signi!cant for 
mildly disliked items (i.e., mildly disliked items 
became less negative with additional exposure). 
For neutral items the ADE was 244 cents (p , 
0.05). For the most disliked items the ADE was 
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27.2 cents (p 5 0.284) (see Figure S3(b)). Third, 
consistent with the AE, the change in spread 
between the !rst exposure (at 500 ms) and a 
second exposure (at 5,500 ms) was 103.7 cents 
(p , 0.000). Similar results were found at the 
2,500 ms exposures. Two additional results 
are shown in the Web Appendix. Figure S3(c) 
plots the net change in bids that results between 
the !rst presentation at 1,000 ms and the sec-
ond presentation at 5,500 ms. The net effect is 
negative and signi!cant for suf!ciently disliked 
items, and it increases with the negativity of the 
item. For neutral items the net effect is 214.5 
cents (p 5 0.271), whereas for the most disliked 
items the net effect is 89.12 cents (p , 0.000). 
Figure S3(d) plots the marginal attention dura-
tion effect that results from increasing exposure 
by 1,500 ms for an item at the bottom of the lik-
ing-rating scale. The marginal effects -uctuate, 
and the maximum effect is found by increasing 
exposure from 1,000 ms to 5,500 ms.

IV. Experiment 3

This experiment extended the previous ones 
in two directions. First, we used posters instead 
of food to explore the extent to which the results 
also apply to non-primary, non-immediate con-
sumption goods. Second, (N 5 56) subjects 
placed liking-ratings instead of bids, which 
allowed us to study the effect of computation 
time on DVs for positive and negative items 
within the same experiment.

The data were analyzed as before. The only 
difference is that now we looked at the change 
in liking-ratings, instead of the change in bids. 
The results were as follows. First, the PEE was 
positive for positive items, negative for nega-
tive items, and approximately zero for neutral 
items (m 5 21.59 rating units, p 5 0.12). It was 
211.2 rating units (p , 0.000) for the most dis-
liked posters and 8 rating units (p , 0.000) for 
the most liked ones (Figure S4(a)). Second, the 
ADE was negative for negative posters, positive 
for positive posters, and approximately zero for 
neutral ones (m 5 0.28 rating units, p 5 0.747). 
For example, for an exposure of 5s, the estimated 
ADE was 25.1 rating units (p , 0.05) for items 
at the bottom of the scale, and 5.65 rating units 
(p , 0.05) for items at the top (Figure S4(b)). 
Third, there was an AE, since the estimated 
change in spread between the !rst exposure 
(at 0.5s) and a second exposure at 5s was 29.9 

 rating units (p , 0.000). Two additional results 
are shown in Figure S4. Panel C shows the net 
effect of the ADE and PEE for the case of a 
5s exposure. Panel D plots the marginal atten-
tion duration effect that results from increasing 
exposure by 1.5s for an item at the bottom of 
the liking-rating scale. As can be seen from the 
graph, the largest marginal effect occurred dur-
ing the !rst 1.5s, which again is consistent with 
the predicted asymptotic effect of computation 
time on DVs.

V. Discussion

The results of the three experiments are 
mostly consistent with the qualitative predic-
tions of the model. In particular, they suggest 
that the DV assigned to an item depends on the 
amount of time spent computing it (i.e., there is 
an attention duration effect) and on the amount 
of previous experience (i.e., there is a previous 
experience effect). The experiments also suggest 
that these effects are approximately positive for 
positive items, negative for negative items, and 
negligible for neutral items, and that the size of 
the effects is proportional to the magnitude of 
the underlying consumption value of the item. 
Furthermore, the results are quantitatively sig-
ni!cant. For example, increasing computa-
tion time from 0.5 to 3.5 seconds generates an 
increase of 43 cents in subjects’ willingness-to-
pay for highly liked junk foods, an amount close 
to their actual retail price.

The main disagreement between the model 
and the data was the presence of a positive 
attention duration effect for mildly disliked 
items. One potential explanation is that the lik-
ing-rating scale is imperfect at detecting nega-
tive items, and the items that might have been 
rated mildly aversive in reality were appetitive.

The results developed here have an immediate 
implication: it should be possible to manipulate 
binary choices by changing the amount of time 
a subject spends computing the DV of each of 
the items. Armel, Aurelie Beaumel, and Rangel 
(2007) show that this is indeed the case.
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