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Summary

Animals learn to predict external contingencies from experience through a process of
conditioning. A natural mechanism for conditioning is stimulus substitution, whereby the
neuronal response to a stimulus with no prior behavioral significance becomes increasingly
identical to that generated by a behaviorally significant stimulus it reliably predicts. We
propose a recurrent neural network model of stimulus substitution which leverages two forms
of inductive bias pervasive in the cortex: representational inductive bias in the form of mixed
stimulus representations, and architectural inductive bias in the form of two-compartment
pyramidal neurons that have been shown to serve as a fundamental unit of cortical asso-
ciative learning. The properties of these neurons allow for a biologically plausible learning
rule that implements stimulus substitution, utilizing only information available locally at the
synapses. We show that the model generates a wide array of conditioning phenomena, and
can learn large numbers of associations with an amount of training commensurate with ani-
mal experiments, without relying on parameter fine-tuning for each individual experimental
task. In contrast, we show that commonly used Hebbian rules fail to learn generic stimulus-
stimulus associations with mixed selectivity, and require task-specific parameter fine-tuning.
Our framework highlights the importance of multi-compartment neuronal processing in the
cortex, and showcases how it might confer cortical animals the evolutionary edge.

Keywords. Associative learning, classical conditioning, recurrent neural networks, synaptic
plasticity, predictive coding, stimulus substitution, mixed selectivity, compartmentalized neuron,
self-supervised learning, surprise.
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Introduction

The ability to forecast important events is necessary for effective behavior. Animals are equipped

with innate reflexes to tackle common threats and to exploit opportunities in their environment.

However, given the complex and changing nature of the world, animals also need to acquire new

reflexes by learning from experience. This process involves the association or conditioning of an

initially neutral stimulus (conditioned stimulus, CS ) with another stimulus intrinsically related

to primary reward or punishment (unconditioned stimulus, US ). If learning is successful, the CS

can then induce the same behavioral response as the US. Initially proposed by Pavlov, this type

of learning is known as classical conditioning.

A potential mechanism for conditioning is stimulus substitution [1]. Under this mechanism,

the response of the relevant population of neurons to the CS becomes increasingly identical to

that generated by the US. After this, any downstream processes that are normally triggered

by the US are also triggered by the CS. Behavioral evidence in favor of stimulus substitution

comes from studies showing that animals display the same behavior to the CS as to the US,

even when the behavior is not appropriate (e.g. consummatory response towards a light that

has been associated with food), and that the behavior is reinforcer dependent [1]. Furthermore,

recent experiments show that during conditioning the response of S1 pyramidal neurons to the

CS becomes increasingly similar to their response to the US, a phenomenon the authors termed

“learning induced neuronal identity switch”, and that this change correlates with learning per-

formance [2].

A basic goal in computational and cognitive neuroscience is to build plausible models of neu-

ral network architectures capable of accounting for psychological phenomena. Previous work has

shown that three-factor Hebbian synaptic plasticity rules accounts for a wide gamut of condi-

tioning phenomena [3–6]. However, these models have some important limitations. First, they

fail to capture the generality of pattern-to-pattern associations implicit in stimulus substitution,

where both the US and the CS correspond to population activity patterns. Some use learning

rules requiring storage of recent events at each synapse [5], while most assume that the tuning

of neurons to stimuli is demixed, allowing simple reward modulated spike-timing-dependent pla-

siticy to establish the appropriate mappings [5, 6]. These assumptions are inconsistent with the

well-established fact that representations throughout the brain are high-dimensional and mixed

[7].

In this study we propose a recurrent neural network (RNN ) model of stimulus substitution.

Critically, the model learns pattern-to-pattern associations using only biologically plausible local

plasticity, and individual neurons are tuned to multiple behavioral stimuli, which gives rise to

mixed representations of the CS s and US s. While subcortical [8] and even single-neuron [9]

mechanisms for conditioning exist, our model is focused on stimulus-stimulus learning in the

cortex, where the use of mixed stimulus representation allows learning a wide and flexible range

of associations within the same neuronal network, which confers an evolutionary edge.

To achieve this goal, we leverage two forms of biological inductive bias built into the cortex:

first, representational inductive bias in the form of mixed stimulus representations, that permit

the efficient packing of multiple associations within the same neuronal population. To combat the

additional complexity introduced by mixed representations, which requires not just the activation

of the correct neurons but also the correct activity level, we leverage the second form of inductive
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bias: architectural inductive bias in the form of two-compartment layer-5 pyramidal neurons

which are prevalent in the cortex [10].

We propose a RNN model of such two-compartment neurons. Recent work has shown that

these neurons can learn to be predictive of a reward [11], and suggests that they could serve as

a fundamental unit of associative learning in the cortex through a built-in cellular mechanism

[12]. Hence, we refer to them as associative neurons. The term associative here does not have a

strictly Hebbian interpretation; rather it refers to the hetero-associative capacity of these neurons

to link together information originating from different streams [13], through a mechanism known

as BAC firing [14]. The properties of these neurons allow for a biologically plausible learning rule

that utilizes only information available locally at the synapses, and that is capable of inducing

self-supervised predictive plasticity [15, 16], which allows neurons to respond with the same firing

rate to the CS as they would to the US, i.e. achieve stimulus substitution.

We show that the model generates a wide array of conditioning phenomena, including delay

conditioning, trace conditioning, extinction, blocking, overshadowing, saliency effects, overexpec-

tation, contingency effects and faster reacquisition of previous learnt associations. Furthermore,

it can learn large numbers of CS-US associations with an amount of training commensurate with

animal experiments, without relying on parameter fine-tuning for each individual experimental

task. In contrast, we show that Hebbian learning rules, including three-factor extensions of Oja’s

rule [17] and the BCM rule [18], fail to learn generic stimulus-to-stimulus associations due to

their unsupervised nature, and require task specific parameter fine-tuning.

Results

Model setup

In classical conditioning animals learn to predict the upcoming appearance of an unconditioned

stimulus (US, e.g. food) after the presentation of a conditioned stimulus (CS, e.g. bell ring).

As shown in fig. 1A, trials start with the presentation of the CS, which lasts until tcs-off. The

US is presented at tus-on, and lasts until the end of the trial. Each trial has a fixed duration of

ttrial seconds. If the US appears before the CS disappears, the task involves delay conditioning.

In contrast, if the CS disappears before the US is shown, the task involves trace conditioning,

with tdelay = tus-on − tcs-off denoting the delay between the two stimuli. In our task animals

need to learn Nstim different CS -US pairs. Every trial one pair is randomly chosen, and the

corresponding CS is shown followed by its associated US.

We model a RNN of associative neurons (fig. 1C, yellow background) that represents the

stimuli using mixed population representations and is capable of learning all of the CS -US as-

sociations using only local information available at the synapses. The inputs to the model are

time-dependent vectors rcs(t) and rus(t), of dimension Ninp, that encode the presence and identity

of the CS and the US. For simplicity, these vectors are represented by unique Boolean vectors,

and they take the value of the stimulus while it is shown, and zero otherwise. The vectors are

randomly generated, subject to a constraint for a minimal Hamming distance Hd between any

two vectors of the same type. This minimal separation limits the extent to which learning on

any give pair impairs learning of the other associations. The output of the associative network
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Figure 1: Model. (A) Every trial has a duration of ttrial seconds. Trials start with the
presentation of a CS, which disappears after time tcs-off. The associated US appears at time
tus-on and stays until the end of the trial. The network has to learn Nstim unique CS-US pairs.
(B) Associative neurons are modeled as an abstraction of a layer-5 cortical pyramidal neuron. V s

and V d denote the voltage in the somatic and dendritic compartments. The somatic compartment
receives as input a Boolean vector rus representing the US. The dendritic compartment receives
as inputs a vector r̂cs with a short-term memory representation of the CS, as well as recursive
activity from all other neurons in the RNN. The matrices Wrnn, Wcs and Wus denote the synaptic
weights for the inputs. Wus is fixed throughout the experiment. Wrnn and Wcs are updated over
trials with training. (C) Full outline of the model. The associative network is made of Nrnn

associative neurons. The US is presented directly to the associative neurons, whereas the CS is
presented to a short-term memory circuit that produces the short-term memory representation
r̂cs. Learning in the associated network is gated by a surprise signal which measures the extent
to which the US, or its absence, was anticipated. The surprise signal is computed in three steps.
First, throughout the trial a linear decoder is used to obtain an estimate r̂us of the US from
the population vector of the associative network, denoted by rrnn. Second, an expectation Ei is
formed according for each US based on the similarity between rius and r̂us. These expectations
determine the level of surprise S associated with the arrival or absence of the US, which then gives
rise to neuromodulator dynamics that gate learning in the associative network. (D) Performance
of the short-term memory network in a single trial when CS s are presented only for 500 ms.
We plot the output of the memory network for several seconds. Each color denotes a different
element in rcs.

is an estimate of the US vector rus, denoted r̂us, which is decoded from network activity at all

times (see fig. 1C and “US decoding” in Methods).

The fundamental unit of computation in the associative network is the associative neuron, a

two-compartment neuron modelled after layer-5 pyramidal cells in the cortex (fig. 1B). A crucial

property of the associative neuron is that it can separate incoming “feedforward” inputs from

“feedback” ones, and compare the two to drive learning. In our case, since we are modelling a

primary reinforcer cortical area, US inputs are assumed feedforward and arrive at the somatic
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compartment (corresponding to the soma and proximal dendrites) through synaptic connections

Wus, and CS inputs are considered feedback connections arriving to the distal dendrites from the

rest of the cortex, along with local recurrent connections (Wcs andWrnn respectively, fig. 1B). This

separation of inputs ultimately allows for the construction of a biologically plausible predictive

learning rule, capable of achieving stimulus substitution.

Specifically, to account for the ability of the associative neuron to predict its own spiking

activity to somatic inputs from dendritic inputs alone [14], we utilize a synaptic plasticity rule

that implements local error correction at the neuronal level [15]. The learning rule modifies the

connections to the dendritic compartment (i.e. Wcs and Wrnn) in order to minimize the discrep-

ancy between the firing rate of the neuron f(V s) (where V s is the somatic voltage, primarily

controlled by US inputs in the beginning of learning, and f the activation function) and the

prediction of the firing rate by the dendritic compartment f(p′V d) (where V d is the dendritic

voltage, primarily controlled by CS inputs, and p′ is a constant accounting for attenuation of V d

due to imperfect coupling with the somatic compartment). The synaptic weight Wpre,post from

a presynaptic neuron to a postsynaptic associative neuron is modified according to:

∆Wpre,post = η(S)
[
f(V s

post)− f(p′ V d
post)

]
Ppre (1)

where η is a variable learning rate which depends on a surprise signal S and Ppre the postsynaptic

potential from the presynaptic neuron (for details, see “Synaptic plasticity rule” in Methods).

In the Supplementary Information (section “Predictive coding and normative justification for

the learning rule”) we show how this learning rule can be derived directly from the objective of

stimulus substitution.

During trace conditioning the CS disappears before the US appears, but an association is still

learnt. This suggests that the brain maintains some short-term memory representation of the

CS after it disappears. To capture this, we introduce a short-term memory RNN that maintains

a (noisy) representation of the CS, denoted by r̂cs, over time (for details, see “CS short-term

memory circuit” in Methods). As shown in fig. 1D, the network is able to maintain short-term

representations of the CS for several seconds before memory leak becomes considerable.

Finally, the learning rule is gated by a surprise mechanism mediated by diffuse neuromodulator

signals [19], as follows: Upon CS presentation, an expectation E is formed according to the

proximity of r̂us to rus for known US s (see “US expectation estimation” in Methods). E can

be thought of as the probability that some known US will appear. Upon US presentation, E

is compared to 1 and a surpise signal S = 1 − E is formed and gates learning; the greater the

surprise, the greater the learning rate. If no US appears in the trial, then we set S = −E at twait

seconds after normal US presentation. Non-zero values of S activate learning, in a process driven

by two neuromodulators, one for positive and another for negative learning rates (for details on

dynamics, see “Surprise based learning rates” in Methods).

Network learns stimulus substitution in delay conditioning

Consider a delay conditioning experiment in which the animal needs to learn 16 CS-US pairs, and

the timing of the trial is as shown in fig. 2A. Note that in this case the CS is present throughout

the trial and, as a result, r̂cs ≈ rcs. Although the short-term memory network is not necessary in
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this particular experiment, we keep it in the model to maintain consistency across experiments.

We train the RNN for a total of 1000 trials. Figure 2B compares the actual representations

of all the US s, one component at a time, with those decoded from the activity of the network in

response only to the associated CS s. The network has accurately learnt all of the associations

after 500 training trials (≈ 32 per CS-US pair).

Figure 2: Delay conditioning and stimulus substitution. (A) Trial structure. The network
is presented with Nstim = 16 different CS-US pairs, randomly selected in each trial. (B) The
network learns all of the CS-US pairs after 500 training trials (≈ 32 per pair). rus denotes
the individual components of the Boolean vectors encoding each of the US s. r̂us denotes the
individual components of the decoded US s, based only on the presentation of the associated
CS s, and measured just before the US appears. (C) Evolution of population responses during
learning. Colors denote trial number. Each point compares the firing rate of an associate neuron
at that stage of learning for a specific CS-US pair when only the US, or only the associated CS
are presented. The colored lines are linear regression fits at each stage of learning. (D) Evolution
of predicted US during learning. Green curve depicts the average expectation across US s after
the network is presented only with the associated CS. Red curve depicts the distance between
the true representation of the US s (rus) and their decoded representation r̂us when presented
only with the associated CS. Individual pairs are shown in faint thin lines. (E) Number of
trials required for the network to reach 80% performance for all pairs (defined as the first time at
which the average expectation E across pairs exceeds 0.8) for different numbers of stimulus pairs.
Performance is measured just before the US appears. Error bands denote ∓ SD computed across
5 different runs of the experiment. (F) Number of trials required to reach 80% performance for
all pairs for different levels of similarity in the encoding of the CS and US input vectors. Error
bands denote ∓ SD computed across 10 different runs of the experiment.

We next investigate how learning evolves with the amount of training. Figure 2C compares

the activity of the associative neurons when presented only with the US, for all possible CS-US

pairs, with their activity when presented only with the associated CS. Early in training, the

associative neurons exhibit little activity in response to the CS s, and their responses are not

correlated with the amount of activity elicited by the US s. By the end of training however, the

neurons respond to the CS the same way they respond to the US, therefore stimulus substitution

is achieved. A host of conditioning phenomena, detailed in following sections, follow from that.

6



For further details on the trial dynamics of learning see the Supplementary Information (section

“How does the RNN learn?”). Importantly, in the Supplements we also show that three-factor

Hebbian learning rules fail at stimulus substitution in our experiments.

Figure 2D tracks the learning dynamics more closely. The green curve shows the average

expectation E assigned to the US s at different stages of training. Perfect learning occurs when

E = 1 for all US s. The red curve provides a measure of distance between the rus and r̂us. We

see that learning requires few repetitions per CS-US, and is substantially faster early on.

There are three sources of randomness in the model: (1) randomness in the sampling of CS

and US sets, (2) randomness in the order in which the stimulus pairs are presented, and (3)

randomness in the initialization of Wrnn, Wcs and Wus. In fig. S5 we explore the impact of this

noise in our results by training 5 networks with different initializations and training schedules.

We find that the level of random variation across training runs is small, and is mostly dominated

by randomness in the sampling of the stimuli. For this reason, unless otherwise stated, we present

results using only a single training run.

Since the RNN uses mixed representations over the same neurons to encode the stimuli, one

natural question is how does learning depend on the number of CS-US pairs in the experiment

(Nstim) and on the similarity of their representations (rcs vs rus).

We explore the first question by training the model for different values of Nstim and then

measuring the number of trials that it takes the network to reach a 80% level of maximum

performance, defined as the level of training at which the average expectation E across pairs

exceeds 0.8. Interestingly, the required number of trials increases exponentially with the number

of CS-US pairs (fig. 2E). This is likely due to interference across pairs: learning of an association

also results in unlearning of other associations at the single trial level. This interference gets

worse as the number of stimuli Nstim increases (fig. S6), which might explain the exponential

dependence. Finally, note that the network is capable of very fast learning when there are only

a few pairs (about 5 presentations per pair for two pairs, fig. 2E).

We explore the second question by training the model for different values of the Hamming

distances Hd, which provides a lower bound on the similarity among US s and, separately, among

CS s. Nstim = 8 for these experiments. Perhaps unsurprisingly, the more dissimilar the stimulus

representations, the faster the learning (fig. 2F). Figure S7 shows how smaller Hd naturally leads

to greater interference across stimuli.

Short-term memory and trace conditioning

Next we consider trace conditioning experiments, in which there is a delay interval tdelay > 0

between the disappearance of the CS and the arrival of the US (fig. 3A). In this case the memory

network is crucial for maintaining a memory trace of the CS to be associated with the US.

As before, we train the RNN for 1000 trials, with 16 different pairs, to explore how learning

changes over time and how the delay tdelay > 0 affects learning. For comparison purposes, we

include the case of delay conditioning in the same figures (tdelay = −1 s).

Figure 3B shows the quality of the decoded representation of the US and fig. 3C-D the

strength of the associated expectation signal, both measured offline and in response only to the

CS. We find that the RNN learns the associations well for small delays, but that the quality of

the learning decays for larger delays. This pattern has been observed in animal experiments [20],
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Figure 3: Trace conditioning. (A) Trial structure. The network is presented with Nstim = 16
different CS-US pairs, randomly selected in each trial. (B) After 500 training trials (∼ 32 per
pair), the network learns all of the CS-US pairs for short tdelay, but struggles for longer delays. rus
denotes the individual components of the Boolean vectors encoding each of the US s. r̂us denotes
the individual components of the decoded US s, based only on the presentation of the associated
CS s. For comparison purposes, we also show results for delay conditioning (tdelay = −1) (C)
Evolution of predicted US during learning. Each curve depicts the expectation for each US after
the network is presented only with the associated CS. Line is the mean across all stimulus pairs.
Bands represent the ∓ SD across stimulus pairs. (D) Network learning performance after 500
training trials for different CS-US delays. Bars denoted ∓ SD across stimulus pairs.

and the model provides a mechanistic explanation: conditioning worsens with increasing delays

because the memory representation of the CS is leaky and degrades at longer delays, as shown

in fig. 1D.

Extinction and re-acquisition

The model can also account for the phenomenon of extinction. To investigate this, we focus on

the case in which the RNN only needs to learn a single CS-US pair in the delay conditioning

task described before. We keep the same trial structure, except that the US is not shown at all,

and the trial duration is extended (fig. 4A). The latter is important because in extinction, the

computation of surprise in equation 22 is triggered twait seconds after the normal time the US

would appear, where twait is the time after which the US is no longer expected. Without loss of

generality, we set twait = 5 seconds.

As shown in fig. 4B, the network learns this association with a small number of trials. At

this point the extinction regime is introduced by presenting the same CS in isolation, and as a

result the learned association rapidly disappears from the network (fig. 4B,C).

Figure 4D looks at the phenomenon of re-acquisition where, after a period of extinction, the

same CS-US pair is reintroduced in training. A common finding in many classical conditioning

experiments is that re-acquisition is faster than the initial learning [21]. To test this, we compare
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Figure 4: Extinction and re-acquisition. (A) Trial structure. In trials where there US is not
shown, surprise is computed at t ≈ 6 seconds. (B) Learning and extinction path for the acquisition
of a single CS-US pair. (C) Evolution of population responses during extinction. Colors denote
extinction trial number. Each point compares the firing rate of an associate neuron at that stage
of learning for a specific CS-US pair when only the US, or only the associated CS are presented.
(D) Learning, extinction and re-acquisition path. Blue line involves an experiment in which the
same CS-US pair is used in training and re-acquisition. Red line involves an experiment in which
a new US is used at the re-acquisition phase.

two cases: one in which the same US is used during re-acquisition (shown in blue), and one

in which a different US is used during re-acquisition (shown in red). We find that re-learning

an association to the same US is faster, therefore accounting for experimental findings on re-

acquisition. Furthermore, our network provides a mechanistic explanation: re-acquisition is

faster because the responses of the neurons in fig. 4C have not decayed to zero, even though the

expectation almost has. Therefore, re-learning is faster to begin with, although the new pattern

catches up later.

Phenomena arising from CS competition

So far we have focused on experiments in which the network needs to learn one-to-one CS-US

pairings. However, some of the most interesting findings in conditioning arise when multiple CS s

are associated with the same US.

To explore this, we extend the model to the case in which the network can be exposed to

two CS s for each US (fig. 5A). Now there are two separate RNN s of associative neurons, one

for each CS. Without loss of generality we focus on delay conditioning and therefore, for the

sake of simplicity, we remove the short-term memory network and directly feed inputs for the
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Figure 5: Blocking, overshadowing, saliency and overexpectation. (A) Model extension
to allow for simultaneous presentation of two CS s. Associations for CS1 and CS2 are represented
in separate populations of associative neurons. The activity of each population is used to sep-
arately decode the US and to construct expectations Ecs1 and Ecs2. The overall expectation
generated by the two CS s is given by E = Ecs1 + Ecs2. Experiments assume that a single asso-
ciation between the US and both CS s has to be learnt. Ecs1 is the prediction generated by CS1
alone. Ecs2 is the prediction generated by CS2 alone. and Ecs1+Ecs2 is the prediction generated
by both cues together. Since the CSs are present throughout the trial, we omit the short-term
memory networks from this exercise. (B) Blocking: CS1 is presented in isolation and fully learns
to predict the US before CS2 is introduced. In this case, CS2 is blocked from learning to predict
the US. (C) Overshadowing: Both CS s are presented from onset and none of them reaches the
same conditioning level as when it was presented alone; instead, the sum E of their expectations
learns the full association. (D) Saliency effects: similar to (C), but now the relative salience of
CS1 has been increased by scaling up its input vector. As a result, the final conditioning level
of CS1 is consistently higher than the one for CS2. (D) Overexpectation: CS1 and CS2 are con-
ditioned separately. When presented together, E exceeds 1, which leads to a negative learning
rate and unlearning.

respective CS s (denoted by rcs1 and rcs2). The activity of these populations is used to decode the

identity of the US, based on the activity generated by each CS separately. These predictions are

then used to generate expectations Ecs1 and Ecs2, which denote the predicted strength generated

by each of them when shown in isolation. The total expectation for the US is then given by

E = Ecs1 + Ecs2. The same logic could be extended to more than two CS s. For all of these

experiments, we learn a single association between a pair of CS s and a single US, i.e. Nstim = 1.

Figure 5B presents the results for a typical blocking experiment. We first present CS1 alone

for the first 100 trials, resulting in the acquisition of an expectation very close to 1. Subsequently,

we start presenting both CS s together. However, the US is already well predicted from CS1,

resulting in small surprises after CS2 is introduced, and thus an approximate zero learning rate.
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Thus, in this setting the model generates the well established phenomenon of blocking.

Figure 5C studies an overshadowing experiment. Here we present both CS s together from the

first trial. In this case both of them develop an expectation from the US, but neither individually

reaches 1. Instead, it is the sum of their expectations that learns the association. Thus, in this

setting the model generates the well established phenomenon of overshadowing. Notice that the

expectation stemming from one of the CS s is larger than the other, which can be attributed to

randomness in the weight matrix initializations.

Figure 5D investigates the impact of stimulus saliency in CS competition. Salient stimuli

receive more attention and generate stronger neural responses than similar but less salient ones

[22]. We model relative saliency by multiplying the input vector rcs1 of CS1, the high-saliency

cue, by a constant sh = 1.2, while keeping rcs2 the same. Otherwise, the task is identical to

the case of overshadowing. Consistent with animal experiments, fig. 5D shows that the more

salient CS1 acquires a substantially stronger association with the US than the less salient CS2.

This results from the fact that the more salient stimulus leads to higher firing rates, and thus to

stronger pre-synaptic potentials which strengthen learning at those synapses.

Finally, fig. 5E presents the results for a typical overexpectation experiment. Here CS1 is

presented alone for the first 100 trials, CS2 is then presented alone for the next 100, and starting

from trial 200, both CS s are presented together. Since at this point the CSs already have

expectations very close to 1, their joint expectation greatly surpasses 1. As a result, surprise

is now negative, leading to unlearning of both conditioned responses, up to the point where

Ecs1 + Ecs2 ≈ 1.

Contingency and unconditional support

So far we have considered experiments that depend on the temporal contiguity of the CS and

US. Another important variable affecting conditioning is contingency; i.e., the probability with

which the CS and the US are presented together [23].

To vary the level of contingency, the US is shown in every trial, but the CS s are presented

only with some probability, which we vary across experiments. Note that this is not the only way

of running contingency conditioning experiments. For example, one could change the contingency

by showing the CS s every trial and then only show the US with some probability. This would

manipulate the degree of contingency, but also introduce an element of extinction, since there

are some trials in which no US follows the CS. We favor the aforementioned experiment because

it eliminates this confound.

Figure 6A involves experiments with a single CS which is shown with different probabil-

ity. Consistent with the animal literature [23], we find that the strength and speed of learning

increases with the CS-US contingency.

Figure 6B involves experiments with two independent predictive stimuli. Every trial CS1 is

shown with probability 0.8 and, independently, CS2 is shown with probability 0.4. Unsurprisingly,

we find that the CS with the highest contingency acquires the stronger predictive response. Note

that the conditioned responses do not need to add up to 1 in this setting.

Figure 6C,D involves a different probabilistic structure for the CS s. CS1 is shown every trial

with probability 0.8, as in the previous case. But now CS2 is only shown if CS1 is present, and

with various probability P (CS2|CS1). When P (CS2|CS1) = 0.5, the unconditional probabilities
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Figure 6: Contingency and causality. The US is shown every trial, while the contingency of
the CS s is varied. (A) Impact of changing the probability of showing the CS in every trial. Each
line depicts the learning path for a different experiment. (B) Experiment with two independent
predictive stimuli. In every trial, CS1 is shown with probability 0.8 and CS2 is shown with
probability 0.4. Blue curve is the expectation acquired by CS1 when shown by itself. Orange
curve is the expectation acquired by CS2 when shown by itself. (C,D) Experiments with a
conditional CS structure. Every trial CS1 is shown with probability 0.8 and CS2 is shown only
if CS1 is also present, with probability P (CS2|CS1). (E) The network learns to ignore spurious
predictors. Since CS2 is conditionally dependent on CS1, our network gradually phases out any
explanatory power of CS2, as more evidence that the US is never caused by the CS2 by itself
arrives.

of the two CS s are the same as in fig. 6B, but the associations learnt are different. After an initial

acquisition phase, Ecs2 decays monotonically to zero. More interestingly, the same effect arises

if P (CS2|CS1) = 0.875, where P (CS2) = 0.7: even though the two CS s are similarly likely, Ecs2

decays to zero after initially going toe-to-toe with Ecs1. This exemplifies the heavily non-linear

behavior of this phenomenon.

To explain this finding, we need to introduce the concept of unconditional support. A CS has

unconditional support if there are trials when it is presented by itself, which means the network

has to rely on it to predict the incoming US. In fig. 6B, both CS s have unconditional support,

albeit CS2’s is much lower. This explains both the noisiness in Ecs2, which increases each time

CS2 is presented alone, and the fact that Ecs2 < Ecs1. However, the situation drastically changes

when CS2 is only presented together with CS1. Here CS2 has no unconditional support. Initially,

both CS s are conditioned, until the sum of their conditioned responses reaches 1. At that point

no more positive surprise is generated for CS2. When CS1 is presented alone, S > 0 because

Ecs1 < 1, which leads to an increase in the Ecs1 association. When both CS s are presented

together, the sum of their conditioned responses is now greater than 1, and therefore S < 0 and

both conditioned responses drop. As a result, over time Ecs2 gradually decay to zero. This also

explain why Ecs takes longer to decay when P (CS2|CS1) is high.
In this task, CS2 is a spurious predictor of the US, since it only appears if CS1 is shown,

and has no additional predictive value conditional on CS1, as shown in fig. 6E. Essentially, the
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network learns to retain the predictive relationship but erase the spurious one. Importantly, we

did nothing that would bias the network towards developing this strikingly non-linear effect.

A common fallacy of causal reasoning is known as the post hoc ergo propter hoc fallacy [24].

It posits that the temporal proximity of two events is sufficient to infer that the earlier event is

a contributing cause of the latter. This can lead to erroneous conclusions, when such temporal

proximity is coincidental. In fig. 6C-E, CS1 is predictive of both CS2 and the US, but CS2 is not

predictive of the US, despite it preceding it temporally. Therefore, the network can recognize the

lack of predictive ability (or unconditional support) of CS2, resolving the post hoc fallacy in this

simpler predictive setting. Similar mechanisms might allow the brain to perform more advanced

forms of causal reasoning.

Finally, note that compared to other conditioning phenomena, the network takes substantially

longer to learn the predictive structure of the task. Combined with the fact that real world data

are scarce and often ambiguous, this might explain why such fallacies often persist.

Discussion

The ability to engage in stimulus-stimulus associative learning provides a crucial evolutionary

advantage. The cerebral cortex might contribute to this evolutionary edge by exploiting rep-

resentational [7] and architectural [14] inductive biases present in the cortical microcircuit [10].

We here propose a recurrent neuronal network model of how the cortex can implement stimulus

substitution, which allows the same set of neurons to encode multiple stimulus-stimulus associa-

tions. The model relies on the properties of two-compartment layer-5 pyramidal neurons, which

based on recent experimental findings, we refer to as associative neurons. These neurons can act

as coincidence detectors for information about the US arriving at their somatic compartment

and information about the CS arriving at their dendritic compartment [11, 12, 14]. Coincidence

detection allows for a biologically plausible synaptic plasticity rule that, after learning, results in

neurons that would normally fire in the presence of the US to respond in the same manner when

the CS is presented. At the population level, this means that the pattern of neural activity cor-

responding to the CS can be morphed into the one corresponding to the US, leading to stimulus

substitution.

Our model accounts for many of most important conditioning phenomena observed in animal

experiments, including delay conditioning, trace conditioning, extinction, blocking, overshad-

owing, saliency effects, overexpectation and contingency effects. The model is able to learn

multiple CS-US associations with a degree of training that is commensurate with animal experi-

ments. Significantly, the model performs well across a wide variety of conditioning tasks without

experiments-specific parameter fine-tuning.

We also show that some influential models of three-factor Hebbian learning rules - Oja’s rule

[17] and the BCM rule [18] - fail to learn generic stimulus-stimulus associations due to their un-

supervised nature. Hebbian rules have demonstrable autoassociative [25] and heteroassociative

[26] capabilities, and when augmented with eligibility traces they have been shown to account

for neuronal-level reinforcement learning [16, 27, 28]. Still, they struggle with pattern-to-pattern

associations when representations are mixed. This is because Hebbian rules are purely unsuper-

vised, and therefore provide no guarantee that the impact of the CS will be eventually shaped
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to be identical to the one of the US. Instead, network performance heavily depends on imple-

mentation details, like training history, task details and stimulus statistics. As a result, decoding

from a population encoding several associations is hampered by the fact that activation levels for

individual neurons when exposed to the CS will more often than not be off from those resulting

from exposure to the corresponding US.

Related work utilized a predictive learning rule similar to the one used here to account for

prospective coding of anticipated stimuli [29]. While prospective coding might also be involved

in conditioning, their study differs in several ways. First, their learning rule is timing-dependent;

it succeeds in a delayed pair associative learning task, but it would require re-learning when the

relative timing of the US in relation to the CS is variable. In contrast, our learning rule applies to

arbitrary task timings. Second, their learning rule lacks gating which, unless strict conditions are

met (dendritic and somatic activity conditioned on a stationary Markov chain), leads to reduced

responses and even catastrophic forgetting. Furthermore, adding gating is not feasible in their

model, because learning needs to bootstrap before the presentation of the delayed stimulus, and

gating would inactivate learning at these times.

Several features of the model are worth emphasizing.

First, the proposed RNN leverages architectural inductive biases in the form of two-compartment

associative neurons. These associative neurons are the most common neuron type in the mam-

malian cortex [10]. This is likely no coincidence; once evolution stumbled upon their usefulness

in predicting external contingencies, it might have favored them. While subcortical [8] and even

single-neuron [9] mechanisms for conditioning exist, the mechanism that we propose can han-

dle mixed representations, and thus allow animals with a cerebral cortex to flexibly learn large

numbers of associations.

The structure of the associative neuron is ideal for stimulus-stimulus learning. Feedforward

inputs, like the US representations, arrive near the soma in layer-5 and directly control the

neuron’s firing rate. Feedback inputs, like the CS representations and the activity of other cortical

neurons, arrive at the distal dentrites in layer-1 [12]. This compartmentalized structure allows the

signals to travel independently, and get associated via a cellular mechanism known as BAC firing

[14]. Specifically, it has been shown that these cells implement coincidence detection, whereby

feedforward inputs trigger a spike which backpropagates to the distal dendrites and concurrently

feedback input arrives at these dendrites, then plateau calcium potentials are initiated in the

dendritic compartment [14]. These plateau potentials result in the neuron spiking multiple times

subsequently and learning occurs in the distal dendrites, so that feedback inputs can elicit spikes

alone in the future, without the need for external information.

Second, a prerequisite for the biological plausiblity of the learning rule used in the model

is that backpropagating action potentials to be disentangled from postsynaptic potentials at

the dendritic compartment. Only then can the two critical components in our learning rule,

f(V s) and f(p′V d) in eq. 1 be compared. Since backpropagating action potentials (denoted

by f(V s) in the model) do not need to travel far, they experience minimal attenuation [14]

and therefore they maintain some of their high-frequency components, which could be used at

synapses to differentiate them from slower postsynaptic potentials (denoted by V d in the model).

As a result, only a static transformation of this last term is needed to compare the two signals.

Consequently, the learning rule relies only on information locally available at each synapse, which
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is a prerequisite for biological plausibility.

Third, our model suggests multiple functional roles for gating. It limits learning to episodes

that appear to have behavioral significance. Gating also prevents drifting of learned associations

due to a lack of perfect self-consistency between f(V s) and f(p′V d) in the learning rule [16],

which is expected in a biological system subject to noise and approximate computation. In

addition, gating provides a critical global reference signal when multiple CS s are available at the

same time.

The model also has some limitations to be addressed in future work. Most importantly,

it does not account for spontaneous recovery of previously learnt associations after extinction.

In our model, extinction stems from the decay of the response of the associate neurons to the

CS, a mechanism akin to unlearning, which erases previous learning, and thus does not allow

for spontaneous recovery or faster re-acquistion. The extinction mechanism proposed here is

complementary to inhibitory learning, the mechanism initially put forth by Pavlov to explain

spontaneous recovery.

In the case of experiments with multiple CS s, the model assumes that different neuronal

population implements separate RNN s to learn the associations for each of them. Although the

two populations interact indirectly through the surprise signals, they each learn to predict the US

on their own. The existence of separate populations might be justifiable when the CS s involve

different sensory modalities (e.g., sound and vision), or very different spatial locations, but not

necessarily when they are presented simultaneously. Extending the model to include differential

routing of simultaneously presented stimuli is an open question for future work.

Another direction for future work is to account for more psychological aspects of conditioning

by developing a larger model that incorporates other forms of learning and generalization like

model-based strategies also thought to take place in the PFC [30], or to allow for context-

dependent computation to resolve conflicts among competing stimuli [31]. In these larger models,

our network would model the stimulus substitution component.

The model allows to differentiate between conditioning effects that can be accounted by low-

level, synaptic plasticity mechanisms, versus other high level explanations. At its core, the model

performs stimulus substitution at the neuronal level, via a gradual acquisition process [32–34].

Despite that, the model is still capable of rapid, few-shot learning, especially when the number

of associations is small compared to size of the network (fig. 2E). Yet, for rapid learning in more

complicated scenarios, fast inference based on prior knowledge might be necessary [35].

Finally, our model suggest an alternative role for representational inductive biases in the form

of mixed selectivity, other than readout flexibility [36]: it permits the efficient packing of multiple

stimulus-stimulus associations within the same neuronal population, which might confer cortical

animals the evolutionary edge.

Methods

RNN of associative neurons

The central element of the model is a RNN of Nrnn associative neurons. The goal of the network

is to learn to predict the identity of the upcoming US from the presentation of the corresponding
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CS, by reproducing the US population vector when only the CS is presented. Each associative

neuron is a two-compartment rate neuron modelled after layer-5 pyramidal cortical neurons

[14, 15]. The somatic compartment models the activity of the soma and apical dendrites of

the neuron, while the dendritic compartment models the activity of distal dendrites in cortical

layer-1. As depicted in fig. 1B, the somatic compartment receives rus(t) as input, whereas the

dendritic compartment receives r̂cs(t) as well feedback activity from the all the RNN units, which

is denoted by rrnn(t).

The instantaneous firing rate of the associative neurons is a sigmoidal function of the somatic

voltage V s:

rrnn =
fmax

1 + exp
[
−β(V s − V1/2)

] . (2)

This activation function is applied element-wise to the vector V s, which represents the instan-

taneous somatic voltage in each associative neuron. fmax sets the maximum firing rate of the

neuron, β is the slope of the activation function, and V1/2 is the voltage level at which half of

the maximum firing rate is attained. We set fmax to a reasonable value for cortical neurons,

and choose appropriate values for β and V1/2 so that the whole dynamic range of the activation

function is used and firing rates when somatic input is present are relatively uniform. See Table

1 for a description of all model parameters, and Table S1 for their justification.

The somatic voltages, and thus the firing rates, are determined by the following system of

differential equations:

• The associative neurons receive an input current to their dendritic compartments, denoted

by Id, which obey:

τs
dId

dt
= −Id +Wcs r̂cs +Wrnn rrnn (3)

where Wrnn is the matrix of synaptic weights between any pair of associative neurons

(dimension: Nrnn×Nrnn),Wcs is the matrix of synaptic weights for the CS input (dimension:

Nrnn ×Ninp), and τs is the synaptic time constant.

• The dynamics of the voltage in the dendritic compartments V d are given by:

τl
dV d

dt
= −V d + Id; (4)

i.e. it is a low-pass filtered version of the dendritic current Id with the leak time constant

τl. For simplicity, voltages and currents are dimensionless in our model. Therefore the leak

resistance of the dendritic compartment is also dimensionless and set to unity.

• The voltages of the somatic compartments, denoted by V s, are given by:

C
dV s

dt
= −gLV

s − gD(V s − V d) + Is (5)

where C is the somatic membrane capacitance, gL is the leak conductance, gD is the

conductance of the coupling from the dendritic to the somatic compartment, and Is is a

vector of input currents to the somatic compartments. Note that this specification assumes

that the time constant for the somatic voltage is one, or equivalently, that it is included in

C.
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• The vector Is of input currents to the somatic compartment is given by:

Is = ge ⊙ (Ee − V s) + gi ⊙ (Ei − V s) (6)

where ge and gi are vectors describing the time-varying excitatory and inhibitory conduc-

tances of the inputs, Ee and Ei are the reversal potentials for excitatory and inhibitory

inputs, and ⊙ denotes the Hadamard (element-wise) product.

• The vectors of excitatory and inhibitory conductances ge and gi for the somatic compart-

ment are described, respectively, by the following two equations:

τs
dge
dt

= −ge + [Wus]+ rus (7)

and

τs
dgi
dt

= −gi + [−Wus]+ rus + ginh (8)

where Wus is a matrix describing the synaptic weights for the US inputs to the somatic

compartments (dimension: Nrnn × Ninp), τs is the same synaptic time constant used in

equation 3, ginh is a constant inhibitory conductance of all associative neurons, and [.]+ is

the rectification function applied element-wise.

The model implicitly assumes zero resting potentials for the somatic and dendritic compart-

ments. In addition, we assume that there is no input to the RNN between trials, and that the

inter-trial interval is sufficiently long so that the variables controlling activity in the associative

neurons reset to zero between trials. The differential equations describing activity within trials

are simulated using the forward Euler method with time setp ∆t = 1 ms.

At the beginning of the experiment, all synaptic weight matrices are randomly initialised,

independently for each entry, using a normal distribution with mean 0 and standard deviation

1/
√
Nrnn, as is standard in the literature. Note that since associative neurons are pyramidal

cells, the elements of Wrnn are restricted to positive values; hence we use the absolute value of

those random weights.

Wus stays fixed for the entire experiment. Wrnn and Wcs are plastic and updated using the

learning rules described next.

Synaptic plasticity rule

We utilize a synaptic plasticity rule inspired by [11, 12, 14], where the firing rate of the somatic

compartment in the presence of the US acts like a target signal for learning the weights Wrnn and

Wcs (see [15] for the initial spike-based learning rule, and [37] for the rate-based formulation).

The learning rule modifies these synaptic weights so that, after learning, CS inputs can predict

the responses of the RNN to the US s.

Consider the synaptic weights from input neuron j to associative neuron i, for either the RNN

or the CS inputs. The weights are updated continuously during the trial using the following rule:

∆Wij = η(S)
[
f(V s

i )− f(p′ V d
i )

]
Pj (9)
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Parameter Value Units Description

Nstim 16 Number of CS-US s pairs to be learnt

ttrial 2 s Trial duration

tcs-off 2 s Time in the trial at which CS disappears

tus-on 1 s Time in the trial at which US appears

Ninp 20 Stimuli input vector length

Hd 8 Minimal Hamming distance between behavioral stimulus vectors

Nrnn 64 Number of associative neurons

fmax 100 spikes/s Maximum firing rate

β 2 Steepness of activation function

V1/2 1.5 Input level for 50 % of the maximum firing rate

τs 100 ms Synaptic time constant

τl 20 ms Leak time constant of dendritic compartment of associative neurons

C 2 ms Capacitance of somatic compartment of associative neurons

gL 0.1 Leak conductance of somatic compartment of associative neurons

gD 0.2 Conductance from dendritic to somatic compartment

ginh 3/8 Constant inhibitory conductance

Ee 14/3 Excitatory synaptic reversal potential

Ei −1/3 Inhibitory synaptic reversal potential

a 0.95 Constant for deviation of the learning rule from self-consistency

τr 200 ms Dopamine release time constant

τu 300 ms Dopamine uptake time constant

η0 5 ∗ 10−3 Baseline learning rate

∆t 1 ms Euler integration step size

Table 1: Model parameter values. These values apply to all simulations, unless otherwise
stated. Note that voltages, currents, and conductances are assumed unitless in the text; therefore
capacitances have the same units as time constants.

where η(S) is a variable learning rate that depends on the instantaneous level of a surprise signal

S, p′ is an attenuation constant derived below, and Pj is the postsynaptic potential in input

neuron j.

The postsynpactic potential Pj has a simple closed form solution detailed in [37]. In particular,

it is a low-passed filtered version of the neuron’s firing rate, so that

Pj(t) = H(t) ∗ rj(t), (10)

where ∗ denotes the convolution operator, and H is the transfer function given by

H(t) =
1

τl − τs

[
exp(− t

τl
)− exp(− t

τs
)

]
u(t) (11)

and u(t) is the Heaviside step function that takes a value of 1 for t > 0 and a value of 0 otherwise.

As noted in [37], for constant η the learning rule is a predictive coding extension of the

classical Hebbian rule. When η is controlled by a surprise signal, as in our model, it can be

thought of a predictive coding extension of a three-factor Hebbian rule [28, 38].
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Importantly, all of the terms in the learning rule are available at the synapses in the dendritic

compartment, making this a local, biologically plausible learning rule. The firing rate of the

neuron f(V s
i ) is available due to backpropagation of action potentials [14]. f(p′V d

i ) is a constant

function of the local voltage V d
i computed locally in the dendritic compartment even when the

somatic input is present. By definition, postsynaptic potentials are available at the synapse.

There are a total number of Ntrain training trials, divided among all CS-US pairs. After each

training trial we measure the state of the RNN off-line by inputing one rcs at a time without the

US, keeping the network weights constant, and measuring the output produced by the model at

that stage of the learning process.

Convergence of synaptic plasticity rule

To understand how and why the learning rule works, it is useful to characterize the somatic

voltages, and thus their associated firing rates, in different trial conditions.

Consider first the case in which only the CS is presented, so the associative neurons only

receive dendritic input. In this case the somatic voltages converge to a steady-state given by

V ss =
gD

gD + gL
V d. (12)

In other words, the somatic voltages converge simply to an attenuated level of the dendritic

voltages, with the level of attenuation given by p = gD
gD+gL

. In this case, the firing rates of the

associative neurons converge to

rcs-onlyrnn = f(V ss) (13)

This follows from the fact that the dendritic voltage is determined only by equations 3 and 4,

and thus is not affected by the state of the somatic compartment, and by the fact that in the

absence of US input Is = 0. The result then follows immediately from equation 5.

Next consider the case in which only the US is presented. In this case equations 3 and 4

imply that V d = 0, and it then follows from equations 5 and 6 that the steady-state somatic

voltage, when Is = 0, is given by

V eq(t) =
geEe + giEi

ge + gi
(14)

and that the firing rates of the associative neurons become

rus-onlyrnn = f(V eq). (15)

Finally consider the case in which the associative neurons receive input from both the CS

and the US. We follow [29] to derive the steady-state solution for the somatic voltage in this

case. Provided inputs to the circuit, which are in behavioral timescales, change slower than the

membrane time constant (C/gL = 20ms), equation 5 reaches a steady-state given by

V s(t) ≈ κV ss + (1− κ)V eq, (16)

where κ(t) = gD+gL
gD+gL+ge+gi

∈ (0, 1] performs a linear interpolation between the steady-state levels
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reached where only the CS or the US are presented.

Practically, when there is no US -input, V ss slightly precedes V s due to the non-zero dendritic-

to-somatic coupling delays, resulting in slight overestimation of the firing rate upon CS pre-

sentation. This can be accounted for by introducing an additional small attenuation, so that

p′ = a gD
gD+gL

= ap in equation 9, with a = 0.95.

Learning is driven by a comparison of the firing rates of the associative neurons in the pres-

ence of both the CS and the US, and the firing rates if they only receive input from the CS.

Importantly, this can happen online and without the need for separate learning phases, because

an estimate of the latter can be formed in the dendritic compartment at all times. Learning is

achieved by modifying Wrnn and Wcs to minimize this difference. We can use the expressions

derived in the previous paragraphs to see why the synaptic learning rule converges to synaptic

weights for which rcs-onlyrnn = rbothrnn .

Take the case in which associative neurons underestimate the activity generated by the US

inputs when exposed only to the CS (i.e. V ss < V eq). In this case, V ss < V s < V eq and Is > 0.

Then from equation 9 we find that ∆w > 0, leading to a futures increase in associative neuron

activity in response to the CS.

The same logic applies in opposite case, where the associative neurons overestimate the ac-

tivity generated by the US inputs when exposed only to the CS. In this case, V ss > V s > V eq

and Is < 0, which leads to a future decrease in associative neuron activity in response to the CS.

Given enough training, this leads to a state where V ss ≈ V eq and at which learning stops

(∆w ≈ 0). When this happens, we have that

rcs-onlyrnn = f(V ss) ≈ f(V eq) = rbothrnn , (17)

so that the RNN responses to the CS become fully predictive of the activity generated by the

US, when presented by themselves.

US decoding

Up to this point the model has been faithful to the biophysics of the brain. The next part of

the model is designed to capture the variable learning rate η in equation 9, and thus is more

conceptual in nature. Our goal here is simply to provide a plausible model of the factors affecting

the learning rates for the RNN. As illustrated in fig. 1C, this part of the model involves three

distinct computations: decoding the US from the RNN activity, computing expectations about

upcoming US s, and computing the surprise signal S.

The brain must have a way to decode the upcoming US, or its presence, from the population

activity in the RNN at any point during the trial. This prediction is represented by the time-

dependent vector r̂us(t). For the purposes of our model, we will use the optimal linear decoder

D (dimension: Nrnn ×Ninp), so that

r̂us(t) = rrnn(t)
⊺D. (18)

The optimal linear decoder D is constructed as follows. First, for each US i = 1, ..., Nstim

define the row vector ϕi describing the steady-state firing rate the each associative neuron that
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arises when it is presented alone. Then define an activity matrix Φ by stacking vertically these

Nstim row vectors (dimension: Nstim ×Nrnn). Φ is built using the initial random weights Wrnn,

before learning has taken place. Second, define a target matrix T (dimension: Nstim ×Ninp) to

be the row-wise concatenated set of US input vectors rus. Then, if D perfectly decodes the US

from the RNN activity, when only the US s are presented, we must have that

ΦD = T. (19)

It then follows that

D = Φ+T, (20)

where + denotes the Moore-Penrose matrix inverse. A desirable property of the Moore-Penrose

inverse is that if equation 20 has more than one solutions, it provides the minimum norm solution,

which results in the smoothest possible decoding.

Note that the decoder, which could be implemented in any downstream brain area requir-

ing information about US s, is completely independent of the input representations of the CS s.

Instead, it is determined before learning given only knowledge of the USs, and is kept fixed

throughout training.

US expectation estimation

Since the US s are primary reinforcers, it is reasonable to assume that their representations, rius

for i = 1, ..., Nstim , are stored somewhere in the brain. Then an expectation for each US can be

formed by

Ei(t) = exp(−κ∥r̂us(t)− rius∥2), (21)

where ∥r̂us(t) − rius∥ is Euclidean distance between the stored and the decoded representations

for each US at time t, and κ controls the steepness of the Gaussian kernel. Recognizing that

the ability to discriminate these patterns increases with the Hamming distance Hd, we set the

precision to be inversely proportional to Hd i.e. κ =
(

8
Hd

)2

.

Note that Ei takes values between 0 and 1, and equals 1 only when the US is perfectly

decoded (i.e., when r̂us = rius). Thus, Ei can be interpreted as a probabilistic estimate for each

US that is computed throughout the trial. To simplify the notation, we denote the expectation

for the US associated with the trial as E.

Surprise based learning rates

The learning rule in equation 9 is gated by a well-documented surprise signal [19]. This surprise

signal diffuses across the brain, and activates learning in the RNN.

For each US the following surprise signal is computed throughout the trial:

Si(t) = δ(t− ttrig)
(
1USi − Ei(t− tsyn)

)
, (22)

where 1USi is an indicator function for the presence of US-i, δ is the Dirac delta function and ttrig

the time a surprise signal is triggered. In trials where the US appears, we set ttrig = tus-on+ tsyn,

where tsyn = 2 ∗ τs = 200ms is a synaptic transmission delay for the detection of the US
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which matches well perceptual delays [39]. The expectation Ei also lags by the same amount,

representing synaptic delays from the associative network to the surprise computation area. As

can be seen in eq. (22), the more the US is expected upon its presentation, the lower the surprise.

In extinction trials, we set ttrig = tus-on + tsyn + twait, where twait is a time after which a US is

no longer expected to arrive. The overall surprise signal is given by:

S =
∑
i

Si. (23)

The surprise signal S gives rise to neuromodulator release and uptake which determine the

learning rate η. We assume that separate neuromodulators are at work for positive and negative

surprise, and that they follow double-exponential dynamics [40].

Consider the case of positive surprise. The released and uptaken neuromodulator concentra-

tion C+
r and C+

u are given by:

τr
dC+

r

dt
= −C+

r + [S]+ (24)

and

τu
dC+

u

dt
= −C+

u + C+
r (25)

where τr and τu are the neuromodulator release and uptake time constants respectively, chosen

to match the dopamine dynamics in fig. 1B in [40].

Negative surprise is controlled by a different neuromodulator, described by the following

analogous dynamics:

τr
dC−

r

dt
= −C−

r + [−S]+ (26)

and

τu
dC−

u

dt
= −C−

u + C−
r (27)

The neuromodulator uptake concentrations control the learning rate:

η = η0 (C+
u − C−

u ), (28)

where η0 is the baseline learning rate.

CS short-term memory circuit

We now describe the short-term memory network used to maintain the r̂cs representation that

serves as input to the RNN.

To obtain a circuit that can maintain a short-term memory through persistent activity in

the order of seconds [41], we train a separate recurrent neural network of point neurons using

backpropagation through time (BPTT). These networks have been deemed to not be biologically

plausible (although see [42]). However, for the purposes of our model we are only interested in

the end product of a short-term memory circuit, and not in how the brain acquired such a circuit.

Thus, BPTT provides an efficient means of accomplishing this goal.

The memory circuit contains 64 neurons, and the vector of their firing rates rmem obeys:

τs
drmem

dt
= −rmem + [Wmem rmem +Winp rcs + b+ nmem]+ (29)
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where Wmem is a matrix with the connection weights between the memory neurons (dimension:

64× 64), Winp is a matrix of connection weights for the incoming CS inputs to the memory net

(dimension: 64×Ninp), τs is the same synaptic time constant described above, b is a unit-specific

bias vector, and nmem is a vector of IID Gaussian noise with zero mean and variance 0.01 added

during training. A linear readout of the activity of the memory network provides the memory

representation:

r̂cs = Wout rmem, (30)

where Wout is a readout matrix (dimension: Ninp × 64).

The weight matricesWmem, Winp, andWout, as well as the bias vector b, are trained as follows.

Every trial lasts for 3 seconds. On trial onset, a Boolean vector rcs is randomly generated and

provided as input to the network. The CS input is provided for a random duration drawn

uniformly from [0.5, 2] seconds. The network is trained to output rcs at all times for trials that

are 3 seconds long. We train the network for a total of 107 trials in batches of 100. We use mean

square error loss at the output, with a grace period 200 ms at the beginning of the trial where

errors are not penalised. We optimise using Adam [43] with default parameters (decay rates for

first and second moments 0.9 and 0.999 respectively, learning rate 0.001). To facilitate BPTT,

which does not scale well with the number of timepoints, we train the memory network using a

time step of 10 ∗∆t.
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Supplemental Information

How does the RNN learn?

In the main text, we’ve shown that the network is able to learn complex delay conditioning tasks

using relatively few trials. In this section we explore in more detail the mechanisms through

which the network solves the problem.

Figure S1 shows how the activity of the associative neurons changes with training. It compares

firing rates in response only to the CS s (top), in response only to the associated US s (middle),

or in response to the full trial in which both are presented (bottom). Several things are worth

noticing.

First, the right column depicts the activity of the network after it has learnt the delay condi-

tioning task. At this stage, the activity patterns in response to only the CS or only the US are

very similar. This makes it possible to decode the upcoming US using only the activity in the

network in response to the associated CS.

Second, the network learns mixed stimulus representations. This is important since there is

evidence that the associative areas of the prefrontal cortex use this type of mixed coding [7].

Third, the pattern of activity in response to only the US is unchanged by learning. This

follows from the fact that in this case the response of the associative neurons is driven only by

the input rus to the somatic compartment and the synaptic weights Wus are not updated with

training.

Fourth, the activity pattern in response to both the CS and the US, is very similar to the

response to the US alone, irrespective of the stage of learning. This is because the firing rate in

our model is mainly controlled by the US, while later in learning the CS would induce the same

response anyway. Overall, the learning rule modifies the CS weights so that the CS inputs are

able to generate the representation of the US both when the CS is presented by itself, and when

presented together with the US.

Figure S2 provides further insight into the inner workings of the model. Each panel depicts

the dynamics of a model component within a training trial. Columns denote different stages of

training. Recall that the learning rule between associative neuron i and input neuron j is the

product of three terms: a surprise modulated learning rate η(S), the presynaptic potential in the

input neuron Pj , and the neuron-specific firing rate error term
[
f(V s

i )− f(p′ V d
i )

]
.

Consider the last term first. f(V s
i ) is the firing rate of associative neuron i, which is determined

by its somatic voltage V s
i . f(p′ V d

i ) is the (approximate) counterfactual firing rate that would

occur if the CS were presented by itself. When the US is presented it dominates the activity of

the associative neurons and thus the firing rate in the presence of both stimuli is similar to what

would have been in the presence of only the US. As a result, for the RNN to be able to predict

the US in response to only the CS, it has to be the case that f(p′ V d
i ) ≈ f(V s

i ). The learning

rule implements a gradient like rule by increasing the CS input weights when f(p′ V d
i ) < f(V s

i ),

and decreasing them when the opposite is true. As shown in the third row of fig. S2, these two

variables are unrelated early in training, but converge to the same pattern as learning progresses.

Next consider the surprise modulated learning rate η(S). Gating the learning rate by surprise

is critical, as it provides a global reference signal crucial when there are more than one predictive

CS s available. Furthermore, biological neurons may not be able to compute f(p′ V d
i ) exactly at
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Figure S1: RNN activity during learning. Firing rates in response to each stimulus pair
at different stages of learning. Top row shows activity in response only to the associated CS.
Middle row shows activity in response only to the associated US. Bottom row shows activity in
response to the presentation of both. Activity is measured off-line (i.e., between learning trials).

the dendritic compartment, resulting in potential mismatches between f(V s
i ) and f(p′ V d

i ). If the

learning rate η were constant across training, these mismatches would result in slow unlearning

when nothing behaviorally significant is happening. In contrast, when the learning rate is gated

by surprise, the learning rate η = 0 most of the times, and any mismatch between when f(V s
i )

and f(p′V d
i ) does not result in unlearning.

Finally consider the presynaptic potential Pj . This term is present in most learning rules and

reflects the old Hebbian dictum that “neurons that fire together wire together”. In particular,

other things being equal, the weights of more active synapse are updated more since they have

a potentially stronger influence on the postsynaptic firing rate.

We emphasize again that the fact that associative neurons are two-compartment neurons is

important for the biological plausibility of the model. The gradient like term
[
f(V s

i )− f(p′ V d
i )

]
depends only on information available at the synapse, since it is based only on variables associated

with that neuron. By definition, the presynaptic potential Pj is also available at the synapse.

Finally, the learning rate is implemented by neuromodulators that are diffused to the synapses
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Figure S2: Within trial dynamics of model components. Each panel depicts the dynamics
of a model component within a training trial. Columns denote the level of training. Rows denote
model variables. f(V s

i ) is the firing rate of associative neuron i, which is determined by its
somatic voltage V s

i . f(p
′V d

i ) is the (approximate) counterfactual firing rate of the neuron when
only the CS is presented. E is the expectation signal for the US shown in the trial. η(S) is the
surprise-modulated learning rate. Pj is the presynaptic potentials of input neuron j. ∆W is the
incremental weight change for elements of each element in Wrnn and Wcs.

of the associative network. As a result, all of the variables required to implement the learning

rule are locally available at each synapse.

Three-factor Hebbian learning fails at stimulus substitution

The results in the main text have shown that our model accounts for many common patterns in

classical conditioning when the RNN is trained with the predictive learning rule in equation 9.

A key feature of this rule is that learning is guided by a comparison of activity in the dendritic

and somatic compartments of the associative neurons.
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Figure S3: Delay conditioning with Oja’s rule. Each point compares the firing rate of an
associative neuron at that stage of learning for a specific CS-US pair when only the US, or only
the associated CS are presented. Model is trained using Oja’s rule. (A) Model learns stimulus
substitution for different normalization strengths when Nstim = 1. Model trained for 100 trials
with η0 = 2 ∗ 10−4. (B) Models fails to learn after 1000 training trials (64 per CS-US pair) when
Nstim = 16. For this experiment, we use η0 = 10−3.

In this section we investigate the influence of the learning rule by asking whether the same

network trained using previously proposed Hebbian plasticity rules is able to account for the

same phenomena. To do this, we keep all of the model components unchanged except for the

learning rule. We train the model with two widely used Hebbian-like plasticity rules, Oja’s rule

[17] and the BCM rule [18]. We find that the resulting network either cannot learn multiple

associations, or requires task specific parameter tuning.

Consider Oja’s learning rule first. In this case the synaptic weights from input neuron j to

associative neuron i are updated using the following rule:

∆Wij = η(S)f(V s
i ) [Pj − nWijf(V

s
i )] (31)

where n is the normalization strength. The normalization component is crucial, because otherwise

learning would diverge. Normalization here focuses on the weights, and subjects the largest

weights to the strongest normalization. We choose n = 40 for which the final responses to the

CS span most of the output range of associative neurons in our model (0− 100 spikes/s).

Figure S3 shows the results of training the RNN with this learning rule in the delay condi-

tioning task. We find that the network can learn well when there is a single CS-US pair, but it

fails when it has to learn multiple associations. In fact, rus-onlyrnn and rcs-onlyrnn are anti-correlated in

this case. This occurs because normalization introduces competition between incoming synapses

to the same neuron [44], which in turn induces competition between the associations to be stored

and leads to interference. More specifically, neurons that fire strongly for one pattern will sustain

the harshest normalization in their incoming weights affecting the response to all other patterns.

Fig. S4A also explores the role of the normalization coefficient and shows that its impact is

minimal when learning a single association. This might be because final weight levels for active

neurons are determined mostly by the firing rate f(V s
i ) which is constant for the same association,

and hence it serves as a modulator of the learning rate.

Now consider the BCM rule, which involves an alternative normalization strategy that, instead

of focusing on the weights, sets a variable potentiation threshold for the postsynaptic firing rate.
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The rule is given by:

∆Wij = η(S)f(V s
i ) [ f(V

s
i )− αθi] Pj (32)

where θi is a time-varying threshold, and α is a parameter that modulates the size of the threshold.

A common choice is to make the threshold a function of the average recent firing rate, which we

implement by making it an exponential moving average of the firing rate though the following

differential equation:

τθ
dθi
dt

= −θi + f(V s
i ) (33)

where the parameter τθ determines the temporal window of integration. In theory, this approach

sounds promising, since if rcs-onlyrnn,i < rbothrnn,i, then f(V s
i ) > θi leading to potentiation and vice

versa, with this logic converging to rcs-onlyrnn,i ≈ rbothrnn,i. However, as we show this is not enough to

guarantee the performance of the BCM rule.

Figure S4 shows the results of training the RNN with the BCM rule and α = 1. We find

that with the same trial conditions used for our main results (as shown in fig. 2) the BCM rule

generates intermediate amounts of conditioning, as it has a tendency to overshoot. Furthermore,

fig. S4B shows that when we change the time at which the US appears conditioning becomes

even worse, and that the problem persists for different values of τθ. Since the BCM rule has

a tendency of underestimating the impact of the CS, we also explored a remedy that involved

amplifying the threshold by setting α = 1.05. Figure S4C shows that this can fix the problem

for experiments in which tus−on = 1 s, but as shown in fig. S4D, the performance of the network

is still highly dependent on US timing. This is because the threshold, determined by a moving

averaging filter of the firing rate, is highly dependent on trial specifics. Therefore, we conclude

that the time-dependent threshold of the BCM rule introduces sensitivity to experimental details

that cannot be overcome.

Overall, the need to fine-tune the parameters of the BCM rule to specific trial details is a

general problem of Hebbian learning rules, stemming from the fact that they lack supervision.

A similar point has been made by [37, 45]. In contrast, predictive learning does not demonstrate

such sensitivity. Figure S4E shows that the network learns the task well for a variety of US onset

times, without any explicit parameter tuning.

The results in this section showcase the importance of the predictive learning rule in this

work, facilitated by the two-compartment nature of the associative neurons. The existence of

two compartments, which separate CS inputs to the dendritic compartment from US inputs to

the somatic compartment, makes it possible for the biologically plausible learning rule in eq. 9

to compare the two and guide learning using only information locally available at the synapse.

In this learning rule, the activity of the somatic compartment serves as a supervisory signal

for learning the weights of the inputs to the dendritic compartment until they are able to fully

predict their activity in response to the US. In contrast, in this section we have shown that two

canonical Hebbian rules struggle with this type of associative learning, in part because they do

not have an analogous supervisory signal.

5



Figure S4: Delay conditioning with BCM rule. Model trained with η0 = 0.3 for 1000
trials in order to learn Nstim = 16 associations. Model parameters and task conditions vary
across panels. (A,C) Left: learning path. Green curve depicts the average expectation across
CS-USpairs. Learned expectations for individual pairs are shown in faint thin lines. Right: firing
rates of all associative neurons after training. (B,D) Network performance, as measured by E,
as a function of the parameter τθ in the BCM rule and the timing at which the US is presented.
(E) Learnt US expectations with our proposed predictive learning rule for different US timings.
In contrast to the BCM rule, predictive learning is insensitive to experimental details.
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Predictive coding and normative justification for the learning rule

In this section we provide further insight into the learning rule used in our model by showing

that it follows directly from the objective of stimulus substitution.

Stimulus substitution states that synaptic connections change during learning so that the

activity of the associative network induced by the CS (rcs-onlyrnn ) becomes identical to the response

induced by the US (rus-onlyrnn ). It follows that the objective of stimulus substitution is to minimize

the discrepancy or loss L between the two:

L =
1

2
(rcs-onlyrnn − rus-onlyrnn )2 (34)

We assume that the synaptic weights for US inputs are fixed, since these are primary reinforcers.

The synaptic weights for the CS inputs are plastic, and they are shaped so that the CS elicits

the same response as the US, essentially becoming predictive of the latter. Assuming a rectified

linear (ReLU) activation function, rcs-onlyrnn will obey

rcs-onlyrnn = [W ⊺P ]+ (35)

where W are the plastic synaptic weights for the CS inputs, and P are the postsynaptic poten-

tialsof the input CS neurons, low-pass filtered by synaptic delays.

To minimize the loss L, we perform local gradient descent with respect to W , which leads to

the following update rule:

∂W

∂t
= −η

∂L
∂W

. (36)

This results in the following update rule between input neuron j and associative neuron i from

presynaptic neuron j:

∆Wij = η
(
rus-onlyrnn,i − rcs-onlyrnn,i

)
Pj . (37)

Here, rus-onlyrnn,i acts as a “teacher” signal, in a setting that resembles self-supervised learning.

Specifically, rcs-onlyrnn,i is compared to rus-onlyrnn,i , and the discrepancy determines the sign and magni-

tude of weight change. However, only synapses from presynaptic neurons that have recently been

active (Pj > 0) are modified. This learning rule is said to perform predictive coding, because CS

inputs should predict (or anticipate) the response to the US.

An implicit requirement of the learning rule is that there has to be a way to tell apart rcs-onlyrnn,i

and rus-onlyrnn,i , in order to compare them. However, a neuron only has a single output at a given

time. Therefore, in principle it is unclear how the two firing rates could be compared in an online

fashion and within the same neuron. The 2-compartment associative neurons resolve this because

the activity in the somatic compartment f(V s
i ) provides a measure of rus-onlyrnn,i

1, f(p′V d
i ) provides

a measure of rcs-onlyrnn,i , and the information available to compute the former term is available in

the dendritic compartment due to backpropagating action potentials [14]. Thus, the associative

neurons contain all of the information needed to implement the learning rule that yields stimulus

substitution.

1In reality, as we show in eq. (16) V s
i is affected by both somatic and dendritic inputs, however as we explain

in the same section the influence of the dendritic inputs can never change the sign of
[
f(V s

i )− f(p′ V d
i )

]
, and

the resulting weight changes are always in the correct direction.
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Supplementary Figures

Parameter Value Units Justification

Nstim 16 Arbitrary, varied in text

ttrial 2 s Arbitrary, varies across experiments

tcs-off 2 s Arbitrary, varies across experiments

tus-on 1 s Arbitrary, varies across experiments

Ninp 20 Arbitrary

Hd 8 Arbitrary, varied in text

Nrnn 64 Larger than number of associations learned

fmax 100 spikes/s Matches plausible firing rates

β 2 For smooth change of firing rates as activation varies

V1/2 1.5 Arbitrary

τs 100 ms Taken from literature

τl 20 ms Taken from literature

C 2 ms Set by τl
gL

gL 0.1 Chosen to be similar in range as somatic conductances from inputs

gD 0.2 Larger than gL to avoid large coupling attenuation and time lags

ginh 3/8 Chosen to get unifrom firing rates distribution

Ee 14/3 Taken from [15]

Ei −1/3 Taken from [15]

a 0.95 Arbitrary

τr 200 ms Fit to experimental data [40]

τu 300 ms Fit to experimental data [40]

η0 5 ∗ 10−3 Chosen for fast learning when Nstim = 1

∆t 1 ms Should be 10 times smaller than smallest time constant

Table S1: Parameter value justifications. These values apply to all simulations, unless
otherwise stated. Note that voltages, currents, and conductances are assumed unitless in the
text; therefore capacitances have the same units as time constants.
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Figure S5: Variation across training runs. Each curve depicts a different training run.
Bands represent the ∓ SD across stimulus pairs. (A) Expectation for each US after the network
is presented only with the associated CS, averaged across all pairs at different levels of training.
(B) Distance between the true representation of the US s (rus) and their decoded representation
r̂us when presented only with the associated CS, averaged across all pairs at different levels of
training.
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Figure S6: Impact of the number of stimulus pairs on delay conditioning. Learning
paths for each CS-US pair for a single experimental run. Each thin line tracks the expectation
E for a single stimulus pair. Note that the paths do not increase monotonically, which shows
that there can be interference across pairs. The vertical read lines indicate the time at which the
average E across pairs (thicker green line) reaches 80% performance level.
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Figure S7: Impact of the similarity on stimulus representation on delay conditioning.
Learning paths for each CS-US pair for a single experimental run. Each thin line tracks the
expectation E for a single stimulus pair. Note that the paths do not increase monotonically,
which shows that there can be interference across pairs. The vertical read lines indicate the time
at which the average E across pairs (thicker green line) reaches 80% performance level.
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